全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

非均匀准脆性岩土类材料的动态力学本构关系的繁衍与演化
Propagation and Evolution of Dynamic Mechanical Constitutive Relation of Heterogeneous Quasi-Brittle Materials

DOI: 10.12677/IJM.2021.101004, PP. 29-51

Keywords: 本构理论,动态本构关系,准脆性材料,非均匀介质,发展演化
Constitutive Theory
, Dynamic Constitutive Relation, Quasi Brittle Materials, Inhomogeneous Medium, Development Process

Full-Text   Cite this paper   Add to My Lib

Abstract:

本构理论描述的是宏观和细观微观尺度下材料或结构在外载荷作用下的响应,是力学研究中不可忽视的研究方向,是材料力学中经久不息的研究课题。本文重点以非均匀介质如岩石或者岩土体、混凝土等准脆性材料为研究对象,针对采动和强动载环境过程中的关键科学问题,系统的阐述国内外关于准脆性材料的动态本构关系的繁衍历程、构建起源、发展适用范畴及基本原理。同时,对常用的几类表征准脆性材料动态力学响应的本构模型进行了系统的理论推导。最后,针对准脆性材料的动态本构进行了细化分类,并研究了其相互关系的演化过程。
Constitutive theory describes the response of material or structure under external load at macro and micro scales. It is a research direction that cannot be ignored in mechanical research and a long-standing research topic in material mechanics. This paper focuses on non-uniform medium such as rock or rock mass, concrete and other quasi brittle materials as the research object, aiming at the key scientific problems in the process of mining and strong dynamic load environment. The development history, origin, application scope and basic principle of dynamic constitutive relation of quasi brittle materials at home and abroad are systematically described. Meanwhile, several kinds of constitutive models which are commonly used to characterize the dynamic mechanical response of quasi brittle materials are systematically deduced. Finally, the dynamic constitutive models of quasi brittle materials are classified and the evolution process of their relationship is studied.

References

[1]  王利民. 准脆性材料黏聚阻裂的计算与实验[J]. 力学季刊, 2013, 3(34): 456-462.
[2]  王青原. 基于三点弯曲梁试验的准脆性材料断裂行为研究[D]: [硕士学位论文]. 贵阳: 贵州大学, 2018.
[3]  王利民, 韩巍巍. 准脆性材料损伤破坏的细宏观联结分析[J]. 固体力学学报, 2015, 36(S1): 20-25.
[4]  霍新. 基于Cosserat理论混凝土等准脆性材料弯曲性能尺寸效应[D]: [硕士学位论文]. 北京: 北京交通大学, 2018.
[5]  Holmquist, T.J. and Johnson, G.R. (1993) A Computational Constitutive Model for Concrete Subjected to Large Strains, High Strain Rates and High Pressures. 14th International Symposium on Ballistics, Quebec, 26-29 September 1993, 591-600.
[6]  Riedel, W. (1999) Penetration of Reinforced Concrete by BETA-B-500 Numerical Analysis Using a New Macroscopic Concrete Model for Hydrocodes. 9th International Symposium, Interaction of the Effects of Munitions with Structures, Berlin, 3-7 May 1999, 315-322.
[7]  Malvar, L.J., Crawford, J.E., Wesevich, J.W., et al. (1997) A Plasticity Concrete Material Model for DYNA3D. International Journal of Impact Engineering, 19, 847-873.
https://doi.org/10.1016/S0734-743X(97)00023-7
[8]  朱兆祥. 环氧树脂在高应变率下的热黏弹性本构方程和时温等效性[J]. 宁波大学学报, 1988, 1(1): 58-68.
[9]  郭德勇, 吕鹏飞, 赵杰超. 煤岩冲击变形破坏特性及其本构模型[J]. 煤炭学报, 2018, 43(8): 2233-2242.
[10]  Abrams, D.A. (1917) Effect of Rate of Application of Load on the Compressive Strength of Concrete. ASTM Journal, 17, 364-377.
[11]  Taylor, L.M., Chen, E.P. and Kuszmaul, J.S. (1986) Microcrack-Induced Damage Accumulation in Brittle Rock under Dynamic Loading. Computer Methods in Applied Mechanics & Engineering, 55, 301-320.
https://doi.org/10.1016/0045-7825(86)90057-5
[12]  许浒, 余志祥, 赵世春. 混凝土非线性分析中的非协调参数Drucker-Prager模型[J]. 四川大学学报(工程科学版), 2012, 44(4): 75-80.
[13]  周永强, 盛谦, 罗红星. 考虑率效应的岩石材料次加载面动态本构模型[J]. 岩土工程学报, 2018, 40(10): 1818-1826.
[14]  白冰, 李小春, 石露. 基于虚强度参数的塑性硬化模式[J]. 长江科学院院报, 2012, 29(8): 24-28.
[15]  Budiansky, B. and O’Connell, R.J. (1976) Elastic Moduli of Cracked Solid. International Journal of Solids & Structures, 21, 61-72.
https://doi.org/10.1016/0020-7683(76)90044-5
[16]  Suaris, W. (2016) Constitutive Model for Dynamic Loading of Concrete. Journal of Structural Engineering, 111, 563-576.
https://doi.org/10.1061/(ASCE)0733-9445(1985)111:3(563)
[17]  董毓利. 不同应变率下混凝土受压全过程的实验研究及其本构模型[J]. 水利学报, 1997(7): 72-77.
[18]  Livermore Software Technology Corporation (2003) LS-DYNA Keyword User’s Manual V970.
[19]  Eibl, J. and Schmidt-Hurtienne, B. (1999) Strain-Rate-Sensitive Con-stitutive Law for Concrete. Journal of Engineering Mechanics, 125, 1411-1420.
https://doi.org/10.1061/(ASCE)0733-9399(1999)125:12(1411)
[20]  Burlion, N., Gatuingt, F. and Pijaudier-Cabot, G. (2000) Compaction and Tensile Damage in Concrete: Constitutive Modelling and Application to Dynamic. Computer Methods in Applied Mechanics and Engineering, 183, 291-308.
https://doi.org/10.1016/S0045-7825(99)00223-6
[21]  Liu, Y., Ma, A. and Huang, F. (2009) Numerical Simulations of Oblique-Angle Penetration by Deformable Projectiles into Concrete Targets. International Journal of Impact Engi-neering, 36, 438-446.
https://doi.org/10.1016/j.ijimpeng.2008.03.006
[22]  Lepp?nen, J. (2006) Concrete Subjected to Projectile and Fragment Impacts: Modelling of Crack Softening and Strain Rate Dependency in Tension. International Journal of Impact Engineering, 32, 1828-1841.
https://doi.org/10.1016/j.ijimpeng.2005.06.005
[23]  Polanco-Loria, M., Hopperstad, O.S., B?rvik, T., et al. (2008) Numerical Predictions of Ballistic Limits for Concrete Slabs Using a Modified Version of the HJC Concrete Model. International Journal of Impact Engineering, 35, 290-303.
https://doi.org/10.1016/j.ijimpeng.2007.03.001
[24]  刘海峰, 宁建国. 强冲击荷载作用下混凝土材料动态本构模型[J]. 固体力学学报, 2008, 29(3): 231-238.
[25]  宁建国, 刘海峰, 商霖. 强冲击荷载作用下混凝土材料动态力学特性及本构模型[J]. 中国科学, 2008, 6(16): 759-772.
[26]  Perzyna, P. (1966) Fundamental Problems in Viscoplasticity. Advances in Applied Mechanics, 9, 244-368.
https://doi.org/10.1016/S0065-2156(08)70009-7
[27]  Tu, Z. and Lu, Y. (2010) Modifications of RHT Material Model for Improved Numerical Simulation of Dynamic Response of Concrete. International Journal of Impact Engi-neering, 37, 1072-1082.
https://doi.org/10.1016/j.ijimpeng.2010.04.004
[28]  Nystr?m, U. and Gylltoft, K. (2011) Comparative Numerical Studies of Projectile Impacts on Plain and Steel-Fibre Reinforced Concrete. International Journal of Impact Engineering, 38, 95-105.
https://doi.org/10.1016/j.ijimpeng.2010.10.003
[29]  Wu, J., Li, L., Du, X., et al. (2017) Numerical Study on the Asphalt Concrete Structure for Blast and Impact Load Using the Karagozian and Case Concrete Model. Applied Sciences, 7, 202-214.
https://doi.org/10.3390/app7020202
[30]  张社荣, 宋冉, 王超. 碾压混凝土HJC动态本构模型修正及数值验证[J]. 振动与冲击, 2019, 38(12): 25-31.
[31]  Izzuddin, B.A. and Fang, Q. (1997) Rate-Sensitive Analysis of Framed Structures Part I: Model Formulation and Verification. Structural Engineering & Mechanics, 5, 221-237.
https://doi.org/10.12989/sem.1997.5.3.221
[32]  黄海健. 轻质泡沫混凝土动态力学性能及本构关系[J]. 建筑材料学报, 2020, 23(2): 232-238.
[33]  Zhang, H., Wang, B., Xie, A., et al. (2017) Experimental Study on Dynamic Mechanical Properties and Constitutive Model of Basalt Fiber Reinforced Concrete. Construction and Building Materials, 152, 154-167.
https://doi.org/10.1016/j.conbuildmat.2017.06.177
[34]  尚仁杰. 混凝土动态本构行为研究[D]: [博士学位论文]. 大连: 大连理工大学, 1994.
[35]  郑永来, 夏颂佑. 岩石黏弹性连续损伤本构模型[J]. 岩石力学与工程学报, 1996(S1): 428-432.
[36]  陈江瑛. 水泥砂浆的率型本构方程[J]. 宁波大学学报, 2000, 27(2): 1-5.
[37]  胡时胜, 王道荣. 冲击载荷下混凝土材料的动态本构关系[J]. 爆炸与冲击, 2002, 22(3): 242-246.
[38]  商霖, 宁建国. 强冲击载荷下混凝土动态本构关系[J]. 工程力学, 2005, 22(2): 116-119.
[39]  单仁亮. 云驾岭煤矿无烟煤的动态本构模型研究[J]. 岩石力学与工程学报, 2006, 25(11): 2258-2263.
[40]  宁建国, 商霖, 孙远翔. 混凝土材料冲击特性的研究[J]. 力学学报, 2006, 38(2): 199-208.
[41]  孟益平. 冲击载荷作用下混凝土的率型本构关系[J]. 安徽理工大学学报, 2007, 27(4): 15-18.
[42]  翟越, 赵均海, 李寻昌. 岩石类材料损伤黏弹塑性动态本构模型研究[J]. 岩石力学与工程学报, 2011, 30(S2): 3820-3824.
[43]  谢理想. 软岩及混凝土材料损伤型黏弹性动态本构模型研究[J]. 岩石力学与工程学报, 2013, 32(1): 857-864.
[44]  Zhang, H., Liu, Y., Sun, H., et al. (2016) Transient Dynamic Be-havior of Polypropylene Fiber Reinforced Mortar under Compressive Impact Loading. Construction and Building Ma-terials, 111, 30-42.
https://doi.org/10.1016/j.conbuildmat.2016.02.049
[45]  Zhang, H., Wang, L., Zheng, K., et al. (2018) Research on Compressive Impact Dynamic Behavior and Constitutive Model of Polypropylene Fiber Reinforced Concrete. Con-struction and Building Materials, 187, 584-595.
https://doi.org/10.1016/j.conbuildmat.2018.07.164
[46]  张文清, 穆朝民. 突出煤的冲击力学行为及本构关系的研究[J]. 煤矿安全, 2016, 47(7): 1-4.
[47]  Dong, S., et al. (2018) Dynamic Impact Behaviors and Constitutive Model of Super-Fine Stainless Wire Reinforced Reactive Powder Concrete. Construction and Building Materials, 184, 602-616.
https://doi.org/10.1016/j.conbuildmat.2018.07.027
[48]  焦楚杰, 李习波, 程从密. 基于分形理论的高强混凝土动态损伤本构关系[J]. 爆炸与冲击, 2018, 38(4): 925-930.
[49]  付玉凯, 解北京, 王启飞. 煤的动态力学本构模型[J]. 煤炭学报, 2013, 38(10): 1769-1774.
[50]  解北京, 严正. 基于层叠模型组合煤岩体动态力学本构模型[J]. 煤炭学报, 2019, 44(2): 463-472.
[51]  Perzyna, P. (1963) The Constitutive Equations for Rate Sensitive Plastic Materials. Quarterly of Applied Mathematics, 20, 321-332.
https://doi.org/10.1090/qam/144536
[52]  Biani, N. and Zienkiewicz, O.C. (1983) Constitutive Model for Concrete under Dynamic Loading. Earthquake Engineering & Structural Dynamics, 11, 689-710.
https://doi.org/10.1002/eqe.4290110508
[53]  López Cela, J.J. (1998) Analysis of Reinforced Concrete Structures Subjected to Dynamic Loads with a Viscoplastic Drucker-Prager Model. Applied Mathematical Modelling, 22, 495-515.
https://doi.org/10.1016/S0307-904X(98)10050-1
[54]  Duvaut, G.L.J.L. (1976) Inequalities in Mechanics and Physics. Springer, Berlin.
https://doi.org/10.1007/978-3-642-66165-5
[55]  Kang, H.D. and Willam, K.J. (2000) Performance Evaluation of Elastoviscoplastic Concrete Model. Journal of Engineering Mechanics, 126, 995-1000.
https://doi.org/10.1061/(ASCE)0733-9399(2000)126:9(995)
[56]  Kang, H.D. and Willam, K.J. (1999) Localization Characteristics of Triaxial Concrete Model. Journal of Engineering Mechanics, 125, 941-950.
https://doi.org/10.1061/(ASCE)0733-9399(1999)125:8(941)
[57]  Chen, D., Al-Hassani, S.T.S., Yin, Z., et al. (2001) Modeling Shock Loading Behavior of Concrete. International Journal of Solids & Structures, 38, 8787-8803.
https://doi.org/10.1016/S0020-7683(01)00102-0
[58]  Winnicki, A., Pearce, C.J. and Bieanie, N. (2001) Visco-plastic Hoffman Consistency Model for Concrete. Computers & Structures, 79, 7-19.
https://doi.org/10.1016/S0045-7949(00)00110-3
[59]  Wang, W.M. (1997) Stationary and Propagative Instabilities in Metals. Delft University of Technology, Delft.
[60]  冯明珲, 吕和祥, 林皋. 黏弹塑性理论在混凝土变形中的应用[J]. 工程力学, 2002, 19(2): 3-8.
[61]  陈书宇. 动态载荷下的混凝土本构关系及有限元实现[J]. 辽宁工学院学报, 2003, 23(1): 5-7.
[62]  Georgin, J.F. and Reynouard, J.M. (2003) Modeling of Structures Subjected to Impact: Concrete Behaviour under High Strain Rate. Cement and Concrete Composites, 25, 131-143.
https://doi.org/10.1016/S0958-9465(01)00060-9
[63]  肖诗云, 林皋, 王哲. Drucker-Prager材料一致率型本构模型[J]. 工程力学, 2003, 20(4): 147-151.
[64]  肖诗云, 林皋, 李宏男. 混凝土WW三参数率相关动态本构模型[J]. 计算力学学报, 2004, 21(6): 641-646.
[65]  Pandey, A.K., Kumar, R., Paul, D.K., et al. (2006) Strain Rate Model for Dynamic Analysis of Reinforced Concrete Structures. Journal of Structural Engineering, 132, 1393-1401.
https://doi.org/10.1061/(ASCE)0733-9445(2006)132:9(1393)
[66]  褚卫江, 苏静波, 徐卫亚. 基于一致性理论的Drucker-Prager材料弹黏塑本构模型[J]. 岩土力学, 2008, 29(3): 811-816.
[67]  Aráoz, G. and Luccioni, B. (2015) Modeling Concrete like Materials under Sever Dynamic Pressures. International Journal of Impact Engineering, 76, 139-154.
https://doi.org/10.1016/j.ijimpeng.2014.09.009
[68]  李兆霞. 一个综合模糊裂纹和损伤的混凝土应变软化本构模型[J]. 固体力学学报, 1995, 16(1): 22-30.
[69]  Govindjee (1995) Anisotropic Modelling and Numerical Simulation of Brittle Damage in Concrete. International Journal for Numerical Methods in Engineering, 38, 3611-3633.
https://doi.org/10.1002/nme.1620382105
[70]  Ju, J.W. (1997) Discussion: Rate Dependent Damage Model for Concrete in Dynamics. Journal of Engineering Mechanics, 123, 1326-1328.
https://doi.org/10.1061/(ASCE)0733-9399(1997)123:12(1326)
[71]  Rossi, P. (1997) Strain Rate Effects in Con-crete Structures: The LCPC Experience. Materials and Structures, 30, 54-62.
https://doi.org/10.1007/BF02539277
[72]  陈书宇. 一种混凝土损伤模型和数值方法[J]. 爆炸与冲击, 1998, 18(4): 62-70.
[73]  Lee, J. and Fenves, G.L. (1998) A Plastic-Damage Concrete Model for Earthquake Analysis of Dams. Earthquake Engineering & Structural Dynamics, 27, 937-956.
https://doi.org/10.1002/(SICI)1096-9845(199809)27:9<937::AID-EQE764>3.0.CO;2-5
[74]  陆晓霞, 张培源. 在围压冲击条件下岩石损伤黏塑性本构关系[J]. 重庆大学学报(自然科学版), 2002, 25(1): 6-8.
[75]  Gatuingt, F. and Pijaudier, C.G. (2002) Coupled Damage and Plasticity Modelling in Transient Dynamic Analysis of Concrete. In-ternational Journal for Numerical and Analytical Methods in Geomechanics, 26, 1-24.
https://doi.org/10.1002/nag.188
[76]  Ragueneau, F. and Gatuingt, F. (2003) Inelastic Behavior Modelling of Concrete in Low and High Strain Rate Dynamics. Computers & Structures, 81, 1287-1299.
https://doi.org/10.1016/S0045-7949(03)00043-9
[77]  Ren, X. and Li, J. (2013) A Unified Dynamic Model for Concrete Considering Viscoplasticity and Rate-Dependent Damage. International Journal of Damage Mechanics, 22, 530-555.
https://doi.org/10.1177/1056789512455968
[78]  Marzec, I. and Tejchman, J. (2013) Computational Modelling of Concrete Behaviour under Static and Dynamic Conditions. Bulletin of the Polish Academy of Sciences: Technical Sciences, 61, 85-96.
https://doi.org/10.2478/bpasts-2013-0007
[79]  Ju, J.W. (1997) Discussion: Rate Dependent Damage Model for Concrete in Dynamics. Journal of Engineering Mechanics, 123, 1326-1328.
https://doi.org/10.1061/(ASCE)0733-9399(1997)123:12(1326)
[80]  Lindholm, U.S., Yeakley, L.M. and Nagy, A. (1974) The Dynamic Strength and Fracture Properties of Dresser Basalt. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 11, 181-191.
https://doi.org/10.1016/0148-9062(74)90885-7
[81]  Muxia, Z., Zuoteng, Y. and Chuanbei, R. (1977) On the Me-chanical Behaviour of Rocks under Impulsive Loading. Bulletin of the Faculty of Engineering, Hokkaido University, 3, 51-61.
[82]  于亚伦. 高应变率下的岩石本构方程[C]//岩石破碎理论与实践——全国第五届岩石破碎学术会论文选集. 岩石破碎理论与实践,1992: 40-44.
[83]  谢理想, 赵光明, 孟祥瑞. 岩石在冲击载荷下的过应力本构模型研究[J]. 岩石力学与工程学报, 2013, 32(S1): 2772-2781.
[84]  Liu, L. and Katsabanis, P.D. (1997) Development of a Continuum Damage Model for Blasting Analysis. International Journal of Rock Mechanics & Mining Sciences, 34, 217-231.
https://doi.org/10.1016/S0148-9062(96)00041-1
[85]  曹文贵. 岩石损伤软化统计本构模型之研究[J]. 岩石力学与工程学报, 1998, 17(6): 628-633.
[86]  东兆星, 单仁亮. 高应变率下岩石本构特性的研究[J]. 工程爆破, 1999, 5(2): 5-9.
[87]  徐卫亚, 韦立德. 岩石损伤统计本构模型的研究[J]. 岩石力学与工程学报, 2002, 21(6): 787-791.
[88]  单仁亮. 岩石动态破坏的时效损伤本构模型[J]. 岩石力学与工程学报, 2003, 22(11): 1771-1776.
[89]  李夕兵, 左宇军, 马春德. 中应变率下动静组合加载岩石的本构模型[J]. 岩石力学与工程学报, 2006, 25(5): 865-874.
[90]  杨明辉, 赵明华, 曹文贵. 基于统计理论的岩石动态损伤本构模型研究[J]. 武汉理工大学学报, 2007, 29(4): 95-98.
[91]  刘军忠, 许金余, 吕晓聪. 围压下岩石的冲击力学行为及动态统计损伤本构模型研究[J]. 工程力学, 2012, 29(1): 55-63.
[92]  曹文贵, 林星涛, 张超. 基于非线性动态强度准则的岩石动态变形过程统计损伤模拟方法[J]. 岩石力学与工程学报, 2017, 36(4): 794-802.
[93]  王恩元, 孔祥国, 何学秋. 冲击载荷下三轴煤体动力学分析及损伤本构方程[J]. 煤炭学报, 2019, 44(7): 2049-2056.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413