全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Smart Grid  2021 

基于柔性行动器–评判器的电–热综合能源系统协调优化
Coordinated Optimization of Integrated Electricity-Heat Energy System Based on Soft Actor-Critic

DOI: 10.12677/SG.2021.112011, PP. 107-117

Keywords: 电–热综合能源系统,优化调度,深度强化学习,柔性行动器–评判器
Integrated Electricity-Heat Energy System
, Optimal Dispatch, Deep Reinforcement Learning, Soft Actor-Critic

Full-Text   Cite this paper   Add to My Lib

Abstract:

电–热综合能源系统的优化调度对于实现系统的能源互补、经济运行具有重要意义。本文提出一种基于柔性行动器–评判器(Soft Actor-Critic, SAC)算法的电–热综合能源系统经济调度方法,首先针对电–热综合能源系统优化调度问题进行建模,然后基于SAC框架将该问题转化为强化学习模型,搭建了强化学习环境。最后对基于SAC的电–热综合能源系统优化运行解结果进行分析,并进一步验证该方法的有效性。
The optimal dispatch of integrated electricity-heat energy system (IEHS) is of great significance to the energy complementation and economic operation of the system. An economic dispatch method for IEHS based on the Soft Actor-Critic (SAC) algorithm is proposed in this paper. Firstly, an optimal dispatch model of IEHS is established, and then the problem is transformed into a reinforcement learning model based on the SAC framework, and a reinforcement learning environment is built. Finally, the optimal operation result of integrated electricity-heat energy system based on SAC is analyzed, and the simulations show that the proposed method can effectively solve the problem and reduce the operation cost.

References

[1]  Wikipedia (2013) Quantum Entanglement. https://en.wikipedia.org/wiki/Quantum_entanglement
[2]  余晓丹, 徐宪东, 陈硕翼, 吴建中, 贾宏杰. 综合能源系统与能源互联网简述[J]. 电工技术学报, 2016, 31(1): 1-13.
[3]  吴晨雨. 电热综合能源系统的建模及优化运行[D]: [博士学位论文]. 南京: 东南大学, 2019.
[4]  Lu, S., Gu, W., Zhou, J.H., Zhang, X.S. and Wu, C.Y. (2018) Coordinated Dispatch of Multi-Energy System with District Heating Network: Modeling and Solution Strategy. Energy, 152, 358-370.
https://doi.org/10.1016/j.energy.2018.03.088
[5]  Li, Z., et al. (2017) Combined Heat and Power Dispatch Considering Pipeline Energy Storage of District Heating Network. IEEE Transactions on Sustainable Energy, 7, 12-22.
https://doi.org/10.3390/en10070893
[6]  Zeng, Y.J. and Sun, Y.G. (2014) An Improved Particle Swarm Optimization for the Combined Heat and Power Dynamic Economic Dispatch Problem. Electric Power Components and Systems, 42, 1700-1716.
https://doi.org/10.1080/15325008.2014.949913
[7]  Yang, J., Zhang, N., Botterud, A. and Kang, C. (2020) On An Equivalent Representation of the Dynamics in District Heating Networks for Combined Electricity-Heat Operation. IEEE Transactions on Power Systems, 35, 560-570.
https://doi.org/10.1109/TPWRS.2019.2935748
[8]  Zhang, B., Huang, Q., Chen, Z. and Blaabjerg, F. (2019) Deep Reinforcement Learning-Based Approach for Optimizing Energy Conversion in Integrated Electrical and Heating System with Renewable Energy. Energy Conversion and Management, 202, Article ID: 112199.
https://doi.org/10.1016/j.enconman.2019.112199
[9]  Zhang, B., Hu, W.H., Li, J.H., Cao, D., Huang, R., Huang, Q., Chen, Z. and Blaabjerg, F. (2020) Dynamic Energy Conversion and Management Strategy for an Integrated Electricity and Natural Gas System with Renewable Energy: Deep Reinforcement Learning Approach. Energy Conversion and Management, 220, Article ID: 113063.
https://doi.org/10.1016/j.enconman.2020.113063
[10]  李宏仲, 王磊, 林冬, 张雪莹. 多主体参与可再生能源消纳的Nash博弈模型及其迁移强化学习求解[J]. 中国电机工程学报, 2019, 39(14): 4135-4150.
[11]  Ji, Y., Wang, J.H., Xu, J.C., Fang, X.K. and Zhang, H.G. (2019) Real-Time Energy Management of a Microgrid Using Deep Reinforcement Learning. Energies, 12, 2291.
https://doi.org/10.3390/en12122291
[12]  Hua, H.C., Chao, Y., Hao, C.T. and Cao, J.W. (2019) Optimal Energy Management Strategies for Energy Internet via Deep Reinforcement Learning Approach. Applied Energy, 239, 598-609.
https://doi.org/10.1016/j.apenergy.2019.01.145
[13]  Liu, X.Z., Wu, J.Z., Jenkins, N. and Bagdanavicius, A. (2016) Combined Analysis of Electricity and Heat Networks. Applied Energy, 162, 1238-1250.
https://doi.org/10.1016/j.apenergy.2015.01.102
[14]  Haarnoja, T., Zhou, A., Abbeel, P. and Levine, S. (2018) Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor. 2018 International Conference on Machine Learning (ICML), Stockholmsm?ssan, 10-15 July 2018, 1861-1870.
[15]  Huang, J., Li, Z. and Wu, Q.H. (2017) Coordinated Dispatch of Electric Power and District Heating Networks: A Decentralized Solution Using Optimality Condition Decomposition. Applied Energy, 206, 1508-1522.
https://doi.org/10.1016/j.apenergy.2017.09.112

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413