全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

煤储层临界解吸压力理论计算误差分析及影响因素研究
Study on Influencing Factors and Error Analysis of Critical Desorption Pressure in Coal

DOI: 10.12677/APF.2021.111004, PP. 29-38

Keywords: 临界解吸压力,吸附解吸曲线,含气量测定,液相水影响,连通性影响
Critical Desorption Pressure
, Desorption Curve, Gas Content, Effect of Liquid Phase, Effect of Connectivity

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文基于现有的临界解吸压力计算方法,对目前煤层气井在生产过程中常见到的理论计算临界解吸压力与实际排采不吻合的现象深入分析原因。分析认为,临界解吸压力计算过程中吸附解吸曲线及含气量测定结果与实际的误差及其相互之间的不匹配性是临界解吸压力计算出现误差的主要原因。对于吸附解吸曲线而言,目前的实验结果均是基于煤储层中不含液相水的前提,而实际储层富含液相水;对于含气量而言,由于煤岩发育的非均质性及连通性导致的测定含气量与实际含气量存在差异。最后基于改进的临界解吸压力理论,考虑到现场参数获得的难易程度,提出新的临界解析压力影响因素,并以实际煤层气藏为例进行分析。
Based on the existing calculation method of critical desorption pressure, the reason why the critical desorption pressure is not consistent with the actual production is analyzed. It is considered that the main reason for the errors in the calculation of the critical desorption pressure is the mismatch between the adsorption/desorption curve and the measured results of the gas content and the ac-tual values. For the adsorption/desorption curve, the current experimental results are based on the premise that there is no liquid phase water in the coal reservoir, while the actual reservoir is rich in liquid phase water; for the gas content, the measured gas content is different from the actual gas content due to the heterogeneity and connectivity of coal and rock development. Finally, based on the improved critical desorption pressure theory, considering the difficulty of obtaining field pa-rameters, a new influencing factor of critical desorption pressure is proposed and analyzed by tak-ing actual coalbed methane reservoir as an example.

References

[1]  Agharazi, A., Lee, B., Nagel, N.B., et al. (2013) Tip-Effect Microseismicity-Numerically Evaluating the Geomechanical Causes for Focal Mechanisms and Microseismicity Magnitude at the Tip of a Propagating Hydraulic Fracture. SPE Un-conventional Resources Conference Canada, Calgary, November 2013, SPE-167129-MS.
https://doi.org/10.2118/167129-MS
[2]  Birol, F. (2010) World Energy Outlook 2010. International Energy Agency, 1.
[3]  Langmuir, I. (1918) The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. Journal of the American Chemical Society, 40, 1361-1403.
https://doi.org/10.1021/ja02242a004
[4]  傅雪海, 秦勇, 韦重韬. 煤层气地质学[M]. 徐州: 中国矿业大学出版社, 2007.
[5]  张晓逵, 宋党有. 煤层气解吸特征研究进展[J]. 中国煤层气, 2009(5): 17-20.
[6]  倪小明, 王延斌, 接铭训, 等. 煤层气井排采初期合理排采强度的确定方法[J]. 西南石油大学学报, 2007, 29(6): 101-104.
[7]  张永生, 孙文卿, 高学通. 煤储层理论临界解吸压力与实际排采对比研究[J]. 山西焦煤科技, 2011(1): 4-7.
[8]  程伟, 王平, 陈磊, 等. 延川南煤层气临界解吸压力误差分析[J]. 中国煤层气, 2012, 9(1): 23-25.
[9]  田永东. 沁水盆地南部煤储层参数及其对煤层气井产能的控制[D]: [博士学位论文]. 北京: 中国矿业大学, 2019: 5.
[10]  顾谦隆. 煤层气井下排采参数及其诊断仪研制要点思考[J]. 中国煤炭地质, 2008, 20(3): 39-44.
[11]  近藤精一(日). 吸附的科学[M]. 北京: 化学工业出版社, 2005.
[12]  李相方, 蒲云超, 孙长宇, 任维娜, 等. 煤层气与页岩气吸附/解吸的理论再认识[J]. 石油学报, 2014, 35(6): 1113-1129.
[13]  Flores, R.M. (2013) Coal and Coalbed Gas: Fueling the Future. Elsevier Science, Burlington.
https://doi.org/10.1016/B978-0-12-396972-9.00010-0
[14]  Strack, M., Kellner, E. and Waddington, J.M. (2005) Dynamics of Biogenic Gas Bubbles in Peat and Their Effects on Peatland Biogeochemistry. Global Biogeochemical Cy-cles, 19, GB1003.
https://doi.org/10.1029/2004GB002330
[15]  Gan, H., Nandi, S.P. and Walker Jr., P.L. (1972) Nature of the Porosity in American Coals. Fuel, 51, 272-277.
https://doi.org/10.1016/0016-2361(72)90003-8
[16]  彭泽阳. 考虑煤层气孔隙水储量计算与临界解吸压力确定方法[D]: [博士学位论文]. 北京: 中国石油大学, 2019.
[17]  李靖. 页岩气赋存方式及产气机理研究[D]: [博士学位论文]. 北京: 中国石油大学, 2017.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413