全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

恶劣地质环境下接地工程分流系数的评估方法研究
Study on the Evaluation Method of Division Factor of Grounding Engineering in Adverse Geological Environment

DOI: 10.12677/JEE.2021.91006, PP. 43-56

Keywords: 分流系数,恶劣地质环境,接地,电磁暂态
Division Factor
, Adverse Geological Environment, Grounding, Electromagnetic Transient

Full-Text   Cite this paper   Add to My Lib

Abstract:

恶劣地质环境下接地工程存在接地电阻偏高的问题,在故障情况下容易导致过高的地电位升高,危及系统的安全运行和人身安全。目前电力系统接地短路时故障电流分布和分流系数的计算往往只局限于单回架空线路或地下电缆的简单情况,且大多数情况下没有考虑非故障相的耦合作用,所建模型也没有考虑变压器的影响。针对这一问题,首先从理论上推导了入地短路电流理论模型,并根据故障位置的不同区分不同情况。其次,基于EMTP电磁暂态程序提出了入地电流简化计算方案,并运用在某恶劣地质环境水电站的案例实现了论文方法的应用。结果表明,入地短路电流是指构成接地网–大地回路进而引起接地网地电位升高的那部分短路电流,计算需要考虑站内短路和站外短路,以及单相接地短路故障和两相接地短路故障共四种情况下可能出现的最大入地短路故障电流。论文方法有助于快速准确进行入地短路电流计算,为准确的接地参数计算提供了有效的参考。
There is a problem of high grounding resistance in the grounding engineering under the harsh geological environment, which is easy to lead to high ground potential in the case of fault, endan-gering the safe operation of the system and personal safety. At present, the calculation of fault current distribution and shunt coefficient is usually limited to the simple case of single circuit overhead line or underground cable, and the coupling effect of non fault phase is not considered in most cases, and the influence of transformer is not considered in the model. To solve this problem, the theoretical model of short-circuit current to ground is deduced theoretically, and different situations are distinguished according to different fault locations. Secondly, based on EMTP electromagnetic transient program, a simplified calculation scheme of ground current is proposed, and the method is applied to a hydropower station with adverse geological environment. The results show that the grounding short-circuit current refers to the part of the short-circuit current which constitutes the grounding grid earth circuit and then causes the grounding grid ground potential to rise. The calculation needs to consider the maximum grounding short-circuit fault current that may occur in four cases, namely, the short-circuit inside the station, the short-circuit outside the station, the single-phase grounding short-circuit fault and the two-phase grounding short-circuit fault. This method is helpful to calculate the short-circuit current quickly and accurately, and provides an effective reference for accurate calculation of grounding parameters.

References

[1]  Substations Committee of the IEEE Power Engineering Society (2000) IEEE Guide for Safety of AC Substation Groundings. IEEE, New York.
[2]  中国电力企业联合会. GB 50065-2011交流电气装置的接地设计规范[S]. 北京: 中国计划出版社, 2011.
[3]  何金良, 曾嵘. 电力系统接地技术[M]. 北京: 科学出版社, 2007.
[4]  Deri, A., Tevan, G., Semlyen, A. and Castanheira, A. (1981) The Complex Ground Return Plane a Simplified Model for Homogeneous and Multi-Layer Earth Return. IEEE Transactions on Power Apparatus and Systems, PAS-100, 3686-3693.
https://doi.org/10.1109/TPAS.1981.317011
[5]  多梅尔, 著. 电力系统电磁暂态计算理论[M]. 李永庄, 等, 译. 北京: 水利电力出版社, 1991.
[6]  Sunde, E.D. (1968) Earth Conduction Effects in Transmission Systems. Dover Publications, Inc., Mineola.
[7]  李谦编著. 电力系统接地网特性参数测量与应用[M]. 北京: 中国电力出版社, 2013.
[8]  国家能源局. DL∕T 475-2017 接地装置特性参数测量导则[S]. 北京: 中国计划出版社, 2019.
[9]  舒廉甫. 三峡左岸电站发电前枢纽接地装置接地电阻测量[C]//中国电机工程学会. 中国电机工程学会高电压专业委员会学术会议: 第一卷, 2004: 465-469.
[10]  方瑜. 四极法测量地网接地电阻的分析[J]. 高电压技术, 1989, 11(4): 41-44.
[11]  解广润. 电力系统接地技术[M]. 北京: 中国电力出版社, 1991.
[12]  李汝彪, 邱毓昌. 用附加串联电阻法消除接地电阻测量中的互感影响[J]. 中国电力, 1994(4): 64-66.
[13]  端木林楠, 赵习静, 蔡巍, 等. 变电站地网接地阻抗测量中互感消除方法研究[J]. 高压电器, 2014, 51(11): 140-145.
[14]  黄新波, 姬林垚, 朱永灿, 等. 电流极与电压极的引线夹角对接地电阻测量精度的影响研究[J]. 高压电器, 2017, 53(5): 14-21.
[15]  马御棠, 张博成, 周仿荣, 等. 消除引线互感影响的地网接地阻抗测量方法[J]. 电瓷避雷器, 2017(4): 73-77.
[16]  袁培, 何智强, 胡晓晖, 等. 考虑大地影响的直线法测量大型地网的接地阻抗[J]. 中国电力, 2018, 51(7): 36-42.
[17]  侯苏洋, 郝婷婷, 于洋, 等. 引线间互感对接地阻抗测量结果的影响分析[J]. 电瓷避雷器, 2019, 289(3): 52-56, 62.
[18]  Dawalibi, F. and Niles, G.B. (1984) Measurements and Computations of Fault Current Distribution on Overhead Transmission Lines. IEEE Transactions on Power Apparatus and Systems, PAS-103, 553-560.
https://doi.org/10.1109/TPAS.1984.318744
[19]  Dawalibi, F. (1980) Ground Fault Current Distribution between Soil and Neutral Conductors. IEEE Transactions on Power Apparatus and Systems, PAS-99, 452-461.
https://doi.org/10.1109/TPAS.1980.319679
[20]  Dawalibi, F., Bensted, D. and Mukhedkar, D. (1981) Soil Effects on Ground Fault Currents. IEEE Transactions on Power Apparatus and Systems, PAS-100, 3442-3450.
https://doi.org/10.1109/TPAS.1981.316687
[21]  Gooi, H.B. and Sebo, S.A. (1985) Distribution of Ground Fault Currents along Transmission Lines—An Improved Algorithm. IEEE Transactions on Power Apparatus and Systems, 104, 663-670.
https://doi.org/10.1109/TPAS.1985.319002
[22]  Garrent, D.L., Myers, J.G. and Patel, S.G. (1987) Determination of Maximum Substation Grounding System Fault Current Using Graphical Analysis. IEEE Transactions on Power Delivery, 2, 725-732.
https://doi.org/10.1109/TPWRD.1987.4308170
[23]  IEEE Std.80-2000 (2000) Guide for Safety in AC Substation Grounding. Substations Committee of the IEEE Power Engineering Society, New York.
[24]  Sarkar, T.K. and Pereira, O. (1995) Using the Matrix Pencil Method to Estimate the Parameters of a Sum of Complex Exponentials. IEEE Antennas and Propagation Magazine, 37, 48-55.
https://doi.org/10.1109/74.370583
[25]  Sheshyekani, K., Karami, H.R., Dehkhoda, P., Paolone, M. and Rachidi, F. (2012) Application of the Matrix Pencil Method to Rational Fitting of Frequency-Domain Responses. IEEE Transactions on Power Delivery, 27, 2399-2408.
https://doi.org/10.1109/TPWRD.2012.2208986
[26]  Heppe, A.J. (1979) Computation of Potential at Surface above an Energized Grid or Other Electrode, Allowing for Nonuniform Current Distribution. IEEE Transactions on Power Apparatus and System, PAS-98, 665-670.
https://doi.org/10.1109/TPAS.1979.319377

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413