全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Recovering Wood Waste to Produce Briquettes Enriched with Commercial Kraft Lignin

DOI: 10.4236/nr.2021.125013, PP. 181-195

Keywords: Hardwood Biomass Densification, Heating Values, Solid Fuel

Full-Text   Cite this paper   Add to My Lib

Abstract:

Aiming to use lignocellulosic biomass as energy source, one of the process that may aggregate values is the densification process, which allows the production of bioenergy using solid fuels, mainly for reducing transportation costs. In this research, solid fuel from co-briquetting of wood residues from sawmill using commercial kraft lignin as binder was investigated. The effects of compression pressure (900, 1200 and 1500 PSI) and briquette formulation (varying wood and kraft lignin proportion) on the quality and characteristics of briquettes were evaluated. The main findings were that briquetting of wood residues with kraft lignin resulted in an improvement of bulk density, strength rupture modulus, low heating value (LHV) and high heating value (HHV). The briquettes using 4% and 6% of kraft lignin, and submitted to 1200 to 1500 PSI, presented higher bulk density and strength resistance, respectively. On the other hand, the heating values showed the highest results with the addition of 2% lignin at 900 PSI, being the legal range for additives in briquettes for many countries such as in European Union.

References

[1]  Luterbacher, J.S., Azarpira, A., Motagamwala, A.H., Lu, F., Ralph, J. and Dumesic, J.A. (2015) Lignin Monomer Production Integrated into the γ-Valerolactone Sugar Platform. Energy & Environmental Science, 8, 2657-2663.
https://doi.org/10.1039/C5EE01322D
[2]  Chen, F., Li, N., Li, S., Li, G., Wang, A., Cong, Y., Wang, X. and Zhang, T. (2016) Synthesis of Jet Fuel Range Cycloalkanes with Diacetone Alcohol from Lignocellulose. Green Chemistry, 18, 5751-5755.
https://doi.org/10.1039/C6GC01497F
[3]  Welfle, A.J. (2017) Balancing Growing Global Bioenergy Resource Demands—Brazil’s Biomass Potential and the Availability of Resources for Trade. Biomass and Bioenergy, 105, 83-95.
https://doi.org/10.1016/j.biombioe.2017.06.011
[4]  Ji, H., Dong, C., Yang, G. and Pang, Z. (2018) Valorization of Lignocellulosic Biomass towards Multi-Purpose Fractionation: Furfural, Phenolic Compounds and Ethanol. ACS Sustainable Chemistry & Engineering, 6, 15306-15315.
https://doi.org/10.1021/acssuschemeng.8b03766
[5]  Welfle, A., Thornley, P. and Röder, M. (2020) A Review of the Role of Bioenergy Modelling in Renewable Energy Research & Policy Development. Biomass and Bioenergy, 136, Article ID: 105542.
https://doi.org/10.1016/j.biombioe.2020.105542
[6]  Huang, H., Liu, J., Liu, H., Evrendilek, F. and Buyukuda, M. (2020) Pyrolysis of Water Hyacinth Biomass Parts: Bioenergy, Gas Emissions, and By-Products Using TG-FTIR and Py-GC/MS Analyses. Energy Conversion and Management, 207, Article ID: 112552.
https://doi.org/10.1016/j.enconman.2020.112552
[7]  Guo, Z., Wu, J., Zhang, Y., Wang, F., Guo, Y., Chen, K. and Liu, H. (2020) Characteristics of Biomass Charcoal Briquettes and Pollutant Emission Reduction for Sulfur and Nitrogen during Combustion. Fuel, 272, Article ID: 117632.
https://doi.org/10.1016/j.fuel.2020.117632
[8]  World Bioenergy Association (2019) Global Bionergy Statistics 2019. World Bioenergy Association, Stockholm.
[9]  Obernberger, I. and Thek, G. (2004) Physical Characterisation and Chemical Composition of Densified Biomass Fuels with Regard to Their Combustion Behavior. Biomass and Bioenergy, 27, 653-669.
https://doi.org/10.1016/j.biombioe.2003.07.006
[10]  Ackom, E., Mabee, W.E. and Saddler, J.N. (2010) Industrial Sustainability of Competing Wood Energy Options in Canada. Applied Biochemistry and Biotechnology, 162, 2259-2272.
https://doi.org/10.1007/s12010-010-9000-6
[11]  Miao, Z., Shastri, Y., Grift, T.E., Hansen, A.C. and Ting, K.C. (2011) Lignocellulosic Biomass Feedstock Supply Logistic Analysis. ASABE Conference Paper, Louisville, 7-10 August 2011, Articlr ID: 1110484.
https://doi.org/10.13031/2013.37203
[12]  Kenney, K.L., Smith, W.A., Gresham, G.L. and Westover, T.L. (2013) Understanding Biomass Feedstock Variability. Biofuels, 4, 111-127.
https://doi.org/10.4155/bfs.12.83
[13]  Karagiannidis, A. (2012) Waste to Energy: Opportunities and Challenges for Developing and Transition Economies, Green Energy and Technology. Springer Science & Business Media, London.
https://doi.org/10.1007/978-1-4471-2306-4
[14]  Strezov, V. and Anawar, H. (2019) Renewable Energy Systems from Biomass: Efficiency, Innovation and Sustainability. CRC Press, Boca Raton.
https://doi.org/10.1201/9781315153971
[15]  Kumar, A., Kumar, N., Baredar, P. and Shukla, A. (2015) A Review on Biomass Energy Resources, Potential, Conversion and Policy in India. Renewable and Sustainable Energy Reviews, 45, 530-539.
https://doi.org/10.1016/j.rser.2015.02.007
[16]  Kaliyan, N. and Morey, R.V. (2009) Factors Affecting Strength and Durability of Densified Biomass Product. Biomass and Bioenergy, 33, 337-359.
https://doi.org/10.1016/j.biombioe.2008.08.005
[17]  Ajiboye, T.K., Abdulkareem, S. and Anibijuwon, A.O.Y. (2016) Investigation of Mechanical Properties of Briquette Product of Sawdust-Charcoal as a Potential Domestic Energy Source. Journal of Applied Science and Environmental Management, 20, 1179-1188.
https://doi.org/10.4314/jasem.v20i4.34
[18]  Samuelsson, R., Thyrel, M., Sjöström, M. and Lestander, T. (2009) Effect of Biomaterial Characteristics on Pelletizing Properties and Biofuel Pellet Quality. Fuel Processing Technology, 90, 1129-1134.
https://doi.org/10.1016/j.fuproc.2009.05.007
[19]  Nilsson, D., Bernesson, S. and Hansson, P. (2011) Pellet Production from Agricultural Raw Materials—A Systems Study. Biomass and Bioenergy, 35, 679-689.
https://doi.org/10.1016/j.biombioe.2010.10.016
[20]  Emerhi, E.A. (2011) Physical and Combustion Properties of Briquettes Produced from Sawdust of Three Hardwood Species and Different Organic Binders. Advances in Applied Science Research, 2, 236-246.
[21]  Chin, O.C. and Siddiqui, K.M. (2000) Characteristics of Some Biomass Briquettes Prepared under Modest Die Pressures. Biomass and Bioenergy, 18, 223-228.
https://doi.org/10.1016/S0961-9534(99)00084-7
[22]  Ahn, B.J., Chang, H.S., Lee, S.M., Choi, D.H., Taek Cho, S.T., Han, G.S. and Yang, I. (2014) Effect of Binders on the Durability of Wood Pellets Fabricated from Larix kaemferi C. and Liriodendron tulipifera L. Sawdust. Renewable Energy, 62, 18-23.
https://doi.org/10.1016/j.renene.2013.06.038
[23]  Rajaseevan, T., Srinivasan, V., Syed Mohamed Qafir, G. and Srithar, K. (2016) An Investigation on the Performance of Sawdust Briquette Blending with Neem Powder. Alexandria Engineering Journal, 55, 2833-2838.
https://doi.org/10.1016/j.aej.2016.07.009
[24]  Zhang, G., Sun, Y. and Xu, Y. (2018) Review of Briquette Binders and Briquetting Mechanism. Renewable and Sustainable Energy Reviews, 82, 477-487.
https://doi.org/10.1016/j.rser.2017.09.072
[25]  Lubwama, M., Yiga, V.A., Muhairwe, F. and Kihedu, J. (2020) Physical and Combustion Properties of Agricultural Residue Bio-Char Bio-Composite Briquettes as Sustainable Domestic Energy Sources. Renewable Energy, 148, 1002-1016.
https://doi.org/10.1016/j.renene.2019.10.085
[26]  Boudet, A.M. (2000) Lignins and Lignification: Selected Issues. Plant Physiology and Biochemistry, 38, 81-96.
https://doi.org/10.1016/S0981-9428(00)00166-2
[27]  Ekeberg, D., Gretland, K.S., Gustafsson, J., Braton, S.M. and Fredheim, G.E. (2006) Characterisation of Lignosulphonates and Kraft Lignin by Hydrophobic Interaction Chromatography. Analytica Chimica Acta, 565, 121-128.
https://doi.org/10.1016/j.aca.2006.02.008
[28]  Boschetti, W.T.N., Carvalho, A.M.M.L., Carneiro, A.C.O., Santos, L.C. and Poyares, L.B.Q. (2019) Potential of Kraft Lignin as an Additive in Briquette Production. Nordic Pulp & Paper Research Journal, 34, 147-152.
https://doi.org/10.1515/npprj-2018-0002
[29]  Boschetti, W.T.N., Lopes, A.C.P., Ribeiro, R.A., Reyes, R.Q. and Carneiro, A.C.O. (2019) Kraft Lignin as an Additive in Pine and Eucalyptus Particle Composition for Briquette Production. Revista árvore, 43, Article ID: e430201.
https://doi.org/10.1590/1806-90882019000200001
[30]  Gouvêa, A.F.G., Carvalho, A.M.M.L. and Carneiro, A.C.O. (2018) Extração da Lignina Kraft de Eucalipto e Uso para Energia. Editora Appris, Paraná.
[31]  Demuner, I.F., Colodette, J.L., Demuner, A.J. and Jardim, C.M. (2019) Biorefinery Review: Wide-Reaching Products Through Kraft Lignin. BioResources, 14, 7543-7581.
https://doi.org/10.15376/biores.14.3.Demuner
[32]  Stelte, W., Sanadi, A.R., Shang, L., Holm, J.K., Ahrenfeldt, J. and Henriksen, U.B. (2012) Recent Developments in Biomass Pelletization—A Review. BioResources, 7, 4451-4490.
https://doi.org/10.15376/biores.7.3.4451-4490
[33]  Agrawal, A., Kaushik, N. and Biswas, S. (2014) Derivatives and Applications of Lignin—An Insight. The Scitech Journal, 1, 30-36.
[34]  Shyamalee, D., Amarasinghe, A.D.U.S. and Senanayaka, N.S. (2015) Evaluation of Different Binding Materials in Forming Biomass Briquettes with Sawdust. International Journal of Scientific and Research Publications, 5, 1-8.
[35]  Pereira, B.L.C., Carneiro, A.C.O., Carvalho, A.M.M.L., Vital, B.R., Oliveira, A.C. and Canal, W.D. (2016) Influência da adição de Lignina Kraft nas propriedades de pellets de Eucalipto. Revista Floresta, 46, 235-242.
https://doi.org/10.5380/rf.v46i2.44936
[36]  Mousa, E.A., Ahmed, H.M. and Wang, C. (2017) Novel Approach towards Biomass Lignin Utilization in Ironmaking Blast Furnace. ISIJ International, 57, 1788-1796.
https://doi.org/10.2355/isijinternational.ISIJINT-2017-127
[37]  Aamiri, O.B., Thilakaratne, R., Tumuluru, J.S. and Satyavolu, J. (2019) An “In-Situ Binding” Approach to Produce Torrefied Biomass Briquettes. Bioengineering, 6, Article No. 87.
https://doi.org/10.3390/bioengineering6040087
[38]  Ház, A., Jablonsky, M., Šurina, I., Kačík, F., Bubeníková, T. and Ďurkovič, J. (2019) Chemical Composition and Thermal Behavior of Kraft Lignins. Forests, 10, Article No. 483.
[39]  Tumuluru, J.S., Wright, C.T., Hess, J.R. and Kenney, K.L. (2011) A Review of Biomass Densification Systems to Develop Uniform Feedstock Commodities for Bioenergy Application. Biofuels, Bioproducts and Biorefining, 5, 683-707.
https://doi.org/10.1002/bbb.324
[40]  Rolim, S.G. and Piotto, D. (2019) Silviculture and Wood Properties of Natives Species of the Atlantic Forest of Brazil. Ed. Rupestre, Belo Horizonte, 164 p.
[41]  Lorenzi, H. (2002) árvores brasileiras: Manual de identificação e cultivo de plantas arbóreas nativas do Brasil. 4th Edition, Instituto Plantarum, Nova Odessa.
[42]  Lorenzi, H. (2002) árvores brasileiras: Manual de identificação e cultivo de plantas arbóreas nativas do Brasil. 2nd Edition, Instituto Plantarum, Nova Odessa.
[43]  Lorenzi, H. (2014) árvores brasileiras: Manual de identificação e cultivo de plantas arbóreas nativas do Brasil. 6th Edition, Instituto Plantarum, Nova Odessa.
[44]  Silva, C.E.S.S., Pace, J.H.C., Gomes, F.J.B., Carvalho, P.C.L., Reis, C.A., Latorraca, J.V.F., Rolim, S.G. and Carvalho, A.M. (2020) Comparison between Resistograph Analysis with Physical Properties of the Wood of Brazilian Native Tree Species. Floresta e Ambiente, 27, Article ID: e20190052.
https://doi.org/10.1590/2179-8087.005219
[45]  TAPPI (Technical Association of the Pulp and Paper Industry) (1996) Standard Method T257 cm-85. Technical Association of the Pulp and Paper Industry, Atlanta.
[46]  TAPPI (Technical Association of Pulp and Paper Industry) (1997) Standard Method T264 om-97. Technical Association of the Pulp and Paper Industry, Atlanta.
[47]  TAPPI (Technical Association of Pulp and Paper Industry) (1991) Standard Method T15 os-58. Technical Association of the Pulp and Paper Industry, Atlanta.
[48]  TAPPI (Technical Association of Pulp and Paper Industry) (2002) Standard Method T211 om-93. Technical Association of the Pulp and Paper Industry, Atlanta.
[49]  Wallis, A.F.A., Wearne, R.H. and Wright, P.J. (1996) Chemical Analysis of Polysaccharides in Plantation Eucalypt Woods and Pulps. CRC Publications Committee, Australia.
[50]  Scandinavian Pulp and Paper and Board Testing Committee (2009) SCAN—Test Methods. Scandinavian Pulp, Paper and Board Testing Committee, Stockholm.
[51]  TAPPI (Technical Association of the Pulp and Paper Industry) (1991) Standard Method. UM 250 Acid-Soluble Lignin in Wood and Pulp. Technical Association of the Pulp and Paper Industry, Atlanta.
[52]  TAPPI (Technical Association of Pulp and Paper Industry) (1998) Standard Method T222 om-98. Technical Association of Pulp and Paper Industry, Atlanta.
[53]  Solar, R., Kacik, F. and Melcer, I. (1987) Simple Semi-Micro Method for the Determination of O-Acetyl Groups in Wood and Related Materials. Nordic Pulp & Paper Research Journal, 4, 139-141.
https://doi.org/10.3183/npprj-1987-02-04-p139-141
[54]  Scott, R.W. (1979) Colorimetric Determination of Hexuronic Acids in Plant Materials. Analytical Chemistry, 51, 936-941.
https://doi.org/10.1021/ac50043a036
[55]  Deutsches Institut Für Normung (DIN) (2011) DIN EN 15104. Determination of Total Content of Carbon, Hydrogen and Nitrogen—Instrumental Methods. CEN, Berlin.
[56]  Deutsches Institut Für Normung (DIN) (2010) DIN EN 14918. Determination of Calorific Value. CEN, Berlin.
[57]  Vital, B.R. (1984) Methods for Determining Wood Density. SIF Technical Report, Sistema de Informações Fiscais (SIF), Minas Gerais.
[58]  Associação Brasileira De Normas Técnicas (ABNT) (2009) Normas técnicas NBR ISO 11093-9, Papel e cartão-Ensaio de tubetes-Parte 9, Rio de Janeiro.
[59]  Filippetto, D. (2008) Briquetagem de resíduos vegetais: Viabilidade técnico—Econômica e potencial de mercado. PhD Thesis, Universidade Estadual de Campinas, São Paulo, 74 p.
[60]  Quirino, W.F. (2004) Briquetagem de resíduos ligno-celulosico. Laboratório de Produtos Florestais-LPF/IBAMA, Brasília, 10 p.
[61]  Moreno, A.I., Font, R. and Conesa, J.A. (2016) Physical and Chemical Evaluation of Furniture Waste Briquettes. Waste Management, 49, 245-252.
https://doi.org/10.1016/j.wasman.2016.01.048
[62]  Shapiro, S.S. and Wilk, M.B. (1965) An Analysis of Variance Test for Normality (Complete Sample). Biometrika, 52, 591-611.
https://doi.org/10.1093/biomet/52.3-4.591
[63]  Cochran, W.G. (1950) The Comparison of Percentages in Matched Samples. Biometrika, 7, 256-266.
https://doi.org/10.1093/biomet/37.3-4.256
[64]  Santana, W.M.S., Calegario, N., Arantes, M.D.C. and Trugilho, P.F. (2012) Effect of Age and Diameter Class on the Properties of Wood from Clonal Eucalyptus. Cerne, 18, 1-8.
https://doi.org/10.1590/S0104-77602012000100001
[65]  Trugilho, P.F., Bianchi, M.L., Rosado, S.C.S., Lima, J.T. and Napoli, A. (2012) Análise elementar da madeira de clones de Eucalyptus. Biomassa & Energia, 5, 53-58.
[66]  Pereira, B.L.C., Carneiro, A.C.O., Carvalho, A.M.M.L., Colodette, J.L., Oliveira, A.C. and Fontes, M.P. (2013) Influence of Chemical Composition of Eucalyptus Wood on Gravimetric Yield and Charcoal Properties. BioResources, 8, 4574-4592.
https://doi.org/10.15376/biores.8.3.4574-4592
[67]  Borges, A.C.P., Alves, C.T. and Torres, E.A. (2016) Torrefied Eucalyptus grandis. Characterization as a Biomass to Using in Industrial Scale. Chemical Engineering Transactions, 49, 283-288.
[68]  Morgan, T.J., Turn, S.Q., Sun, N. and George, A. (2016) Fast Pyrolysis of Tropical Biomass Species and Influence of Water Pretreatment on Product Distributions Biomass. PLoS ONE, 11, e0151368.
https://doi.org/10.1371/journal.pone.0151368
[69]  Veiga, T.R.L.A., Lima, J.T., Dessimoni, A.L.A., Pego, M.F.F., Soares, J.R. and Trugilho, P.F. (2017) Different Plant Biomass Characterization for Biochar Production. Cerne, 23, 529-536.
https://doi.org/10.1590/01047760201723042373
[70]  Silveira, E. (2018) Acoustic Field Influence in the Kinetics of Thermochemical Degradation during Biomass Torrefaction. PhD Thesis, Universidade de Brasília, Brasília, 131 p.
[71]  Silva, D.A., Eloy, E., Caron, B.O. and Trugilho, P.F. (2019) Elemental Chemical Composition of Forest Biomass at Different Ages for Energy Purposes. Floresta e Ambiente, 26, Article ID: e20160201.
https://doi.org/10.1590/2179-8087.020116
[72]  Gomide, J.L., Colodette, J.L., Oliveira, R.C. and Silva, C.M. (2005) Caracterização tecnológica, para produção de celulose, da nova geração de clones de Eucalyptus do Brasil. Revista árvore, 29, 129-137.
https://doi.org/10.1590/S0100-67622005000100014
[73]  Gomes, F.J.B., Colodette, J.L., Burnet, A., Batalha, L.A.R., Santos, F.A. and Demuner, I.F. (2015) Thorough Characterization of Brazilian New Generation of Eucalypt Clones and Grass for Pulp Production. International Journal of Forestry Research, 2015, Article ID: 814071.
https://doi.org/10.1155/2015/814071
[74]  Demirbas, A. (2002) Relationships between Heating Value and Lignin, Moisture, Ash and Extractive Contents of Biomass Fuels. Energy Exploration & Exploitation, 20, 105-111.
https://doi.org/10.1260%2F014459802760170420
[75]  Demirbas, A. (2003) Relationships between Lignin Contents and Fixed Carbons of Biomass Samples. Energy Conversion and Management, 44, 1481-1486.
https://doi.org/10.1016/S0196-8904(02)00168-1
[76]  Demirbas, A. (2003) Relationships between Heating Value and Lignin, Fixed Carbon and Volatile Material Contents of Shells from Biomass Products. Energy Sources, 25, 629-635.
https://doi.org/10.1080/00908310390212336
[77]  Demirbas, A. (2007) Effects of Moisture and Hydrogen Content on the Heating Value of Fuels. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 29, 649-655.
https://doi.org/10.1080/009083190957801
[78]  Fahmi, R., Bridgwater, A.V., Darvell, L.I., Jones, J.M., Yates, N., Thain, S. and Donnison, I.S. (2007) The Effect of Alkali Metals on Combustion and Pyrolysis of Lolium and Festuca Grasses, Switchgrass and Willow. Fuel, 86, 1560-1569.
https://doi.org/10.1016/j.fuel.2006.11.030
[79]  Tanger, P., Field, J.L., Jahn, C.E., Defoort, M.W. and Leach, J.E. (2013) Biomass for Thermochemical Conversion: Targets and Challenges. Frontiers in Plant Science, 4, Article No. 218. https://doi.org/10.3389/fpls.2013.00218
[80]  Araschi, J.C., Goveia, D., Dezjacomo, G. and Prates, G.A. (2019) Evaluation of Biomass Properties for the Production of Solid Biofuels. Floresta e Ambiente, 26, Article ID: e20180433.
https://doi.org/10.1590/2179-8087.043318
[81]  Sommersacher, P., Bruneer, T. and Obenberger, I. (2012) Fuel Indexes: A Novel Method for the Evaluation of Relevant Combustion Properties of New Biomass Fuels. Energy & Fuels, 26, 380-390.
https://doi.org/10.1021/ef201282y
[82]  Cherney, J.H. and Verma, V.K. (2013) Grass Pellet Quality Index: A Tool to Evaluate Suitability of Grass Pellets for Small Scale Combustion Systems. Applied Energy, 103, 679-684.
https://doi.org/10.1016/j.apenergy.2012.10.050
[83]  Bezzon, G. (1994) Síntese de novos combustíveis sólidos a partir de resíduos agroflorestais e possíveis contribuições no cenário energético brasileiro. PhD Thesis, Universidade Estadual de Campinas, São Paulo, 137 p.
[84]  Eichler, P., Toledo, M., Vilares, M., Gomes, F., Lourega, R., Santos, G., Gomes, L. and Santos, F. (2017) Potential Assessment of Eucalyptus Grown for Biorefinery Processes. Agronomy Science and Biotechnology, 3, 1-11.
https://doi.org/10.33158/ASB.2017v3i1p1
[85]  Duarte, A.P., Robert, D. and Lachenal, D. (2001) Eucalyptus globulus Kraft Pulp Residual Lignin. Part 2. Modification of Residual Lignin Structure in Oxygen Bleaching. Holzforschung, 55, 645-651.
https://doi.org/10.1515/HF.2001.105
[86]  Zhou, X.-G. and Lu, X.-J. (2014) Structural Characterization of Kraft Lignin for Its Green Utilization. Wood Research, 59, 583-592.
[87]  Gordobil, O., Moriana, R., Zhang, L., Labidi, J. and Sevastyanova, O. (2016) Assesment of Technical Lignins for Uses in Biofuels and Biomaterials: Structure-Related Properties, Proximate Analysis and Chemical Modification. Industrial Crops and Products, 83, 155-165.
https://doi.org/10.1016/j.indcrop.2015.12.048
[88]  Paula, L.E.R., Trugilho, P.F., Napoli, A. and Bianchi, M.L. (2011) Characterization of Residues from Plant Biomass for Use in Energy Generation. Cerne, 17, 237-246.
https://doi.org/10.1590/S0104-77602011000200012
[89]  Paula, L.E.R., Trugilho, P.F., Rezende, R.N. and Assis, C.O. (2011) Produção e avaliação de briquetes de resíduos lignocelulósicos. Pesquisa Florestal Brasileira, 31, 103-112. https://doi.org/10.4336/2011.pfb.31.66.103
[90]  Protásio, T.P., Alves, I.C.N., Trugilho, P.F., Silva, V.O. and Baliza, A.E.R. (2011) Compactação de biomassa vegetal residual visando à produção de biocombustíveis sólidos. Pesquisa Florestal Brasileira, 31, 273-283.
https://doi.org/10.4336/2011.pfb.31.68.273
[91]  Protásio, T.P., Bufalino, L., Tonoli, G.H.D., Couto, A.M., Trugilho, P.F. and Guimarães Júnior, M. (2011) Relação entre o poder calorífico superior e os componentes elementares e minerais da biomassa vegetal. Pesquisa Florestal Brasileira, 31, 122-133.
https://doi.org/10.4336/2011.pfb.31.66.113
[92]  Brand, M.A. (2011) Energia de biomassa florestal. Interciência, Rio de Janeiro, 114 p.
[93]  Tan, Z. and Lagerlvist, A. (2011) Phosphorous Recovery from the Biomass Ash: A Review. Renewable and Sustainable Energy Reviews, 15, 3588-3602.
https://doi.org/10.1016/j.rser.2011.05.016
[94]  Onukak, I.E., Mohammed-Dabo, I.A., Ameh, A.O., Okoduwa, S.I.R. and Fasanya, O.O. (2017) Production and Characterization of Biomass Briquettes from Tannery Solid Waste. Recycling, 2, Article No. 17.
https://doi.org/10.3390/recycling2040017
[95]  Tomani, P., Axegard, P., Berglin, N., Lovell, A. and Nordgren, D. (2011) Integration of Lignin Removal into a Kraft Pulp Mill and Use of Lignin as a Biofuel. Cellulose Chemistry and Technology, 45, 533-540.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133