全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Novel Urine Method for the Diagnosis of Active Tuberculosis by Immunoassay for the Detection of ESAT-6 Using Hydrogel Nanoparticles in HIV Patients

DOI: 10.4236/jtr.2021.92006, PP. 73-84

Keywords: Tuberculosis, HIV+, Hydrogel Nanoparticles and ESAT-6

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background: In patients with HIV, conventional tests are of low sensitivity; therefore, a new diagnostic test with hydrogel nanoparticles with reactive blue dye is proposed, which allows the capture, conservation and concentration of ESAT-6 in urine. NIPAs are copolymers that capture low molecular weight proteins and protect against enzymatic degradation. Using an immunoassay, it is possible to detect and quantify ESAT-6 present in urine as a possible marker of active TB. Design/Methods: Study in Lima, Peru, HIV+ participants, ≥18 years with and without tuberculosis (TB). Smear microscopy, culture in solid medium and urine immunoassay were performed. The reference was the diagnosis of TB by radiological or clinical microbiological criteria (indication for TB treatment). There were 2 preanalytical processes: untreated and treated urine (centrifuged, heated), then incubation with NIPAm. After washing, elution, sonication, heat and centrifugation, the final eluate was obtained. This was placed on nitrocellulose membranes, which by means of fixation and incubation processes with anti-ESAT-6 and anti-IgG antibodies, revelation with C-DiGit® Blot Scanner and FluorChem R FR0001. Calibration curves were included in the membranes, density was measured using Image J software. ROC curves, sensitivity and specificity were obtained. Results: The result by groups was HIV+ patient: ROC: 0.75, cut-off point ≥24.06 ng/ml, sensitivity 76.32%, specificity 68.89%, patients ≤200 cells CD4 mm3/ml, ROC: 0.78, cutoff point ≥26.20 ng/ml, sensitivity 75.86%, specificity 71.88%, patients >200 CD4

References

[1]  World Health Organization (2020) Informe mundial sobre la tuberculosis.
https://www.who.int/teams/global-tuberculosis-programme/tb-reports
[2]  Organización Panamericana de la Salud (2017) Coinfeccion TB/VIH: GuíaClínica Regional. Actualización 2017.
[3]  Mendelson, M. (2007) Diagnosing Tuberculosis in HIV-Infected Patients: Challenges and Future Prospects. British Medical Bulletin, 81-82, 149-165.
https://doi.org/10.1093/bmb/ldm009
[4]  Kaforou, M., Wright, V.J., Oni, T., French, N., Anderson, S.T., Bangani, N., et al. (2013) Detection of Tuberculosis in HIV-Infected and -Uninfected African Adults Using Whole Blood RNA Expression Signatures: A Case-Control Study. PLOS Medicine, 10, e1001538.
https://doi.org/10.1371/journal.pmed.1001538
[5]  Richeldi, L. (2006) An Update on the Diagnosis of Tuberculosis Infection. American Journal of Respiratory and Critical Care Medicine, 174, 736-742.
https://doi.org/10.1164/rccm.200509-1516PP
[6]  Scott, L., Da Silva, P., Boehme, C.C., Stevens, W. and Gilpin, C.M. (2017) Diagnosis of Opportunistic Infections: HIV Co-Infections-Tuberculosis. Current Opinion in HIV and AIDS, 12, 129-138.
https://doi.org/10.1097/COH.0000000000000345
[7]  Flores, L.L., Steingart, K.R., Dendukuri, N., Schiller, I., Minion, J., Pai, M., et al. (2011) Systematic Review and Meta-Analysis of Antigen Detection Tests for the Diagnosis of Tuberculosis. Clinical and Vaccine Immunology, 18, 1616-1627.
https://doi.org/10.1128/CVI.05205-11
[8]  Lawn, S.D. and Gupta-Wright, A. (2015) Detection of Lipoarabinomannan (LAM) in Urine Is Indicative of Disseminated TB with Renal Involvement in Patients Living with HIV and Advanced Immunodeficiency: Evidence and Implications. Transactions of the Royal Society of Tropical Medicine and Hygiene, 110, 180-185.
https://doi.org/10.1093/trstmh/trw008
[9]  Moore, D.A.J., Evans, C.A.W., Gilman, R.H., Sc, B., Coronel, J., et al. (2007) Microscopic-Observation Drug-Susceptibility Assay for the Diagnosis of TB. New England Journal of Medicine, 355, 1539-1550.
https://doi.org/10.1056/NEJMoa055524
[10]  World Health Organization (2014) Xpert MTB/RIF for People Living with HIV. World Health Organization, Geneva.
[11]  Lawn, S.D., Brooks, S.V., Kranzer, K., Nicol, M.P., Whitelaw, A., Vogt, M., et al. (2011) Screening for HIV-Associated Tuberculosis and Rifampicin Resistance before Antiretroviral Therapy Using the Xpert MTB/RIF Assay: A Prospective Study. PLoS Medicine, 8, e1001067.
https://doi.org/10.1371/journal.pmed.1001067
[12]  Pai, M. (2013) Diagnosis of Pulmonary Tuberculosis: Recent Advances. Journal of Indian Medical Association, 111, 332-336.
https://www.e-trd.org/journal/view.php?doi=10.4046/trd.2015.78.2.64
[13]  Salud, D.E. (2008) Demora en el Diagnóstico de Tuberculosis Pulmonar en una región de Colombia. Revista de Salud Pública, 10, 94-104.
https://doi.org/10.1590/S0124-00642008000100009
[14]  Budiarti, A., Nugraha, J., Dwi, A., Widodo, W., Program, I. and Airlangga, U. (2018) The Examination of ESAT-6 , CFP-10 , MPT-64 Antigens of Mycobacterium tuberculosis in Urine of Pediatric Tuberculosis Patient with Immunochromatography. Folia Medica Indonesiana, 54, 195-199.
https://doi.org/10.20473/fmi.v54i3.10014
[15]  Ramirez-Priego, P., Martens, D., Elamin, A.A., Soetaert, P., Van Roy, W., Vos, R., et al. (2018) Label-Free and Real-Time Detection of Tuberculosis in Human Urine Samples Using a Nanophotonic Point-of-Care Platform. ACS Sensors, 3, 2079-2086.
https://doi.org/10.1021/acssensors.8b00393
[16]  Reither, K., Saathoff, E., Jung, J., Minja, L.T., Kroidl, I., Saad, E., et al. (2009) Low Sensitivity of a Urine LAM-ELISA in the Diagnosis of Pulmonary Tuberculosis. BMC Infectious Diseases, 9, Article No. 141.
https://doi.org/10.1186/1471-2334-9-141
http://bmcinfectdis.biomedcentral.com/articles/10.1186/1471-2334-9-141
[17]  Tebianian, M., Mosavari, N., Taghizadeh, M. and Ebrahimi, S.M. (2016) Evaluation of Specific Antibodies against Mycobacterium tuberculosis Recombinant Antigens for Detection of Recent Infection. International Journal of Mycobacteriology, 5, S254.
https://doi.org/10.1016/j.ijmyco.2016.11.011
[18]  Zhang, X., Su, Z., Zhang, X., Hu, C., Yu, J., Gao, Q., et al. (2013) Generation of Mycobacterium Tuberculosis-Specific Recombinant Antigens and Evaluation of the Clinical Value of Antibody Detection for Serological Diagnosis of Pulmonary Tuberculosis. International Journal of Molecular Medicine, 31, 751-757.
https://doi.org/10.3892/ijmm.2013.1254
[19]  Araujo, Z., Giampietro, F., Bochichio, M.D.L.A., Palacios, A., Dinis, J., Isern, J., et al. (2013) Immunologic Evaluation and Validation Of methods Using Synthetic Peptides Derived from Mycobacterium tuberculosis for the Diagnosis of Tuberculosis Infection. Memórias do Instituto Oswaldo Cruz, 108, 131-139.
http://www.ncbi.nlm.nih.gov/pubmed/23579789
https://doi.org/10.1590/0074-0276108022013001
[20]  Paris, L., Magni, R., Zaidi, F., Araujo, R., Saini, N., Harpole, M., et al. (2017) Urine Lipoarabinomannan Glycan in HIV-Negative Patients with Pulmonary Tuberculosis Correlates with Disease Severity. Science Translational Medicine, 9, eaal2807.
https://doi.org/10.1126/scitranslmed.aal2807
[21]  Magni, R., Espina, B.H., Liotta, L.A., Luchini, A. and Espina, V. (2014) Hydrogel Nanoparticle Harvesting of Plasma or Urine for Detecting Low Abundance Proteins. Journal of Visualized Experiments, No. 90, e51789.
https://doi.org/10.3791/51789
[22]  Douglas, T.A., Tamburro, D., Fredolini, C., Espina, B.H., Lepene, B.S., Ilag, L., et al. (2011) Biomaterials the Use of Hydrogel Microparticles to Sequester and Concentrate Bacterial antigens in a Urine Test for Lyme Disease. Biomaterials, 32, 1157-1166.
https://doi.org/10.1016/j.biomaterials.2010.10.004
[23]  Castro-Sesquen, Y.E., Gilman, R.H., Mejia, C., Clark, D.E., Choi, J., Reimer-Mcatee, M.J., et al. (2016) Use of a Chagas Urine Nanoparticle Test (Chunap) to Correlate with Parasitemia Levels in T. cruzi/HIV Co-Infected Patients. PLoS Neglected Tropical Diseases, 10, e0004407.
https://doi.org/10.1371/journal.pntd.0004407
[24]  Castro-Sesquen, Y.E., Gilman, R.H., Galdos-Cardenas, G., Ferrufino, L., Sánchez, G., Valencia Ayala, E., et al. (2014) Use of a Novel Chagas Urine Nanoparticle Test (Chunap) for Diagnosis of Congenital Chagas Disease. PLoS Neglected Tropical Diseases, 8, e3211.
https://doi.org/10.1371/journal.pntd.0003211
[25]  Raveendran, R. and Wattal, C. (2016) Utility of Multiplex Real-Time PCR in the Diagnosis of Extrapulmonary Tuberculosis. The Brazilian Journal of Infectious Diseases, 20, 235-241.
https://doi.org/10.1016/j.bjid.2016.01.006
[26]  Mehta, P.K., Singh, N., Dharra, R., Dahiya, B., Sharma, S., Sheoran, A., et al. (2016) Diagnosis of Tuberculosis Based on the Detection of a Cocktail of Mycobacterial Antigen 85B, ESAT-6 and Cord Factor by Immuno-PCR. Journal of Microbiological Methods, 127, 24-27.
https://doi.org/10.1016/j.mimet.2016.05.003
[27]  Brock, M., Hanlon, D., Zhao, M. and Pollock, N.R. (2020) Detection of Mycobacterial Lipoarabinomannan in Serum for Diagnosis of Active Tuberculosis. Diagnostic Microbiology and Infectious Disease 96, Article ID: 114937.
https://doi.org/10.1016/j.diagmicrobio.2019.114937
[28]  Broger, T., Sossen, B., Toit, E., Kerkhoff, A.D., Schutz, C., Reipold, E.I., et al. (2019) Articles Novel Lipoarabinomannan Point-of-Care Tuberculosis Test for People with HIV: A Diagnostic Accuracy Study. The Lancet Infectious Diseases, 19, 852-861.
https://doi.org/10.1016/S1473-3099(19)30001-5
[29]  Kerkhoff, A.D., Sossen, B., Schutz, C., et al. (2020) Diagnostic Sensitivity of SILVAMP TB-LAM (FujiLAM) Point-of-Care Urine Assay for Extra-Pulmonary Tuberculosis in People Living with HIV. European Respiratory Journal, 55, Article ID: 1901259.
https://doi.org/10.1183/13993003.01259-2019
[30]  Hussain, M.M., Samir, T.M. and Azzazy, H.M.E. (2013) Unmodified Gold Nanoparticles for Direct and Rapid Detection of Mycobacterium tuberculosis Complex. Clinical Biochemistry, 46, 633-637.
https://doi.org/10.1016/j.clinbiochem.2012.12.020

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413