全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Analysis of Transient Pulse Electroosmotic Flow of Maxwell Fluid through a Circular Micro-Channel Using Laplace Transform Method

DOI: 10.4236/ojfd.2021.112005, PP. 67-80

Keywords: Pulse Electroosmotic Flow, Laplace Transform, Maxwell Fluid, Relaxation Time, Pulse Width

Full-Text   Cite this paper   Add to My Lib

Abstract:

A semi-analytical solution is presented using method of Laplace transform for the transient pulse electroosmotic flow (EOF) of Maxwell fluid in a circular micro-channel. The driving mode of pulse EOF here is considered as an ideal rectangle pulse. The solution involves solving the linearized Poisson-Boltzmann (P-B) equation, together with the Cauchy momentum equation and the general Maxwell constitutive equation. The results show that the profiles of pulse EOF velocity vary rapidly and gradually stabilize as the increase of time?\"\"?within a half period. The velocity profiles at the center of the micro-channel increase significantly with relaxation time \"\", especially for the smaller pulse width a. However, as the pulse width a increases, this change will be less obvious. At the same time, the different change frequency of velocity profiles will slow down, which means a long cycle time. Additionally, the time needed to attain the steady status becomes longer with the increase of relaxation time?\"\" and pulse width a.

References

[1]  Stone, H.A., Stroock, A.D. and Ajdari, A. (2004) Engineering Flows in Small Devices: Microfluidics toward a Lab-on-a-Chip. Annual Review of Fluid Mechanics, 36, 381.
https://doi.org/10.1146/annurev.fluid.36.050802.122124
[2]  Bayraktar, T. and Pidugu, S.B. (2006) Characterization of Liquid Flows in Microfluidic Systems. International Journal of Heat and Mass Transfer, 49, 815.
https://doi.org/10.1016/j.ijheatmasstransfer.2005.11.007
[3]  Bao, L.P., Jian, Y.J., Chang, L., Su, J., Zhang, H.Y. and Liu, Q.S. (2013) Time Periodic Electroosmotic Flow of the Generalized Maxwell Fluids in a Semicircular Microchannel. Communications in Theoretical Physics, 59, 615-622.
https://doi.org/10.1088/0253-6102/59/5/16
[4]  Hunter, R.J. (1981) Zeta Potential in Colloid Science. Academic Press, Cambridge.
[5]  Levine, S., Marriott, J.R., Neale, G. and Epstein, N. (1975) Theory of Electrokinetic Flow in Fine Cylindrical Capillaries at High Zeta Potentials. Journal of Colloid & Interface Science, 52, 136-149.
https://doi.org/10.1016/0021-9797(75)90310-0
[6]  Taos, H.K. (2000) Electroosmotic Flow through an Annulus. Journal of Colloid & Interface Science, 225, 247-250.
https://doi.org/10.1006/jcis.1999.6696
[7]  Hsu, J.P., Kao, C.Y., Tseng, S.J. and Chen, C.J. (2002) Electrokinetic Flow through an Elliptical Microchannel: Effects of Aspect Ratio and Electrical Boundary Conditions. Journal of Colloid & Interface Science, 248, 176-184.
https://doi.org/10.1006/jcis.2001.8200
[8]  Yang, C., Li, D. and Masliyah, J.H. (1998) Modeling Forced Liquid Convection in Rectangular Microchannels with Electrokinetic Effects. International Journal of Heat & Mass Transfer, 41, 4229-4249.
https://doi.org/10.1016/S0017-9310(98)00125-2
[9]  Bianchi, F., Ferrigno, R. and Girault, H.H. (2000) Finite Element Simulation of an Electroosmotic Driven Flow Division at a t-Junction of Microscale Dimensions. Analytical Chemistry, 72, 1987-1993.
https://doi.org/10.1021/ac991225z
[10]  Wang, C.Y., Liu, Y.H. and Chang, C.C. (2008) Analytical Solution of Electro-Osmotic Flow in a Semicircular Microchannel. Physics of Fluids, 20, Article ID: 063105. https://doi.org/10.1063/1.2939399
[11]  Dutta, P. and Beskok, A. (2001) Analytical Solution of Time Periodic Electroosmotic Flows: Analogies to Stokes’ Second Problem. Analytical Chemistry, 73, 5097-5102.
https://doi.org/10.1021/ac015546y
[12]  Keh, H.J. and Tseng, H.C. (2001) Transient Electrokinetic Flow in Fine Capillaries. Journal of Colloid & Interface Science, 242, 450-459.
https://doi.org/10.1006/jcis.2001.7797
[13]  Kang, Y.J., Yang, C. and Huang, X.Y. (2002) Dynamic Aspects of Electroosmotic Flow in a Cylindrical Microcapillary. International Journal of Engineering Science, 40, 2203-2221.
https://doi.org/10.1016/S0020-7225(02)00143-X
[14]  Wang, X.M., Chen, B. and Wu, J.K. (2007) A Semianalytical Solution of Periodical Electro-Osmosis in a Rectangular Microchannel. Physics of Fluids, 19, Article ID: 127101.
https://doi.org/10.1063/1.2784532
[15]  Chakraborty, S. and Ray, S. (2008) Mass Flow-Rate Control through Time Periodic Electro-Osmotic Flows in Circular Microchannels. Physics of Fluids, 20, Article ID: 083602.
https://doi.org/10.1063/1.2949306
[16]  Jian, Y.J., Yang, L.G. and Liu, Q.S. (2010) Time Periodic Electro-Osmotic Flow through a Microannulus. Physics of Fluids, 22, Article ID: 042001.
https://doi.org/10.1063/1.3358473
[17]  Deng, S.Y., jian, Y.J., Bi, Y.H., Chang, L., Wang, H.J. and Liu, Q.S. (2010) Unsteady Electroosmotic Flow of Power-Law Fluid in a Rectangular Microchannel. Mechanics Research Communications, 39, 9-14.
https://doi.org/10.1016/j.mechrescom.2011.09.003
[18]  Zhao, M.L. and Wang, S.W. (2015) Analytical Solution of the Transient Electro-Osmotic Flow of a Generalized Fractional Maxwell Fluid in a Straight Pipe with a Circular Cross-Section. European Journal of Mechanics—B/Fluids, 54, 82-86.
https://doi.org/10.1016/j.euromechflu.2015.06.016
[19]  Jian, Y.J., Su, J., Chang, L., Liu, Q.S. and He, G.W. (2014) Transient Electroosmotic Flow of General Maxwell Fluids through a Slit Microchannel. Zeitschrift fur Angewandte Mathematik und Physik (ZAMP), 65, 435-447.
https://doi.org/10.1007/s00033-013-0341-1
[20]  Zhao, M.L., Wang, S.W. and Wei, S.S. (2013) Transient Electro-Osmotic Flow of Oldroyd-B Fluid in a Straight Pipe of Circular Cross Section. Journal of Non-Newtonian Fluid Mechanics, 201, 135-139.
https://doi.org/10.1016/j.jnnfm.2013.09.002
[21]  Jiang, Y.T., Qi, H.T., Xu, H.Y. and Jiang, X.Y. (2017) Transient Electroosmotic Slip Flow of Fractional Oldroyd-B Fluids. Microfluidics and Nanofluidics, 21, 1-10.
https://doi.org/10.1007/s10404-016-1843-x
[22]  Liang, P.C., Wang, S.W. and Zhao, M.L. (2020) Numerical Study of Rotating Electroosmotic Flow of Oldroyd-B Fluid in a Microchannel with Slip Boundary Condition. Chinese Journal of Physics, 65, 459-471.
https://doi.org/10.1016/j.cjph.2020.02.025
[23]  Xie, Z.Y. and Jian, Y.J. (2014) Rotating Electroosmotic Flow of Power-Law Fluids at High Zeta Potentials. Colloids & Surfaces A Physicochemical & Engineering Aspects, 461, 231-239.
https://doi.org/10.1016/j.colsurfa.2014.07.051
[24]  Baos, R., Arcos, J., Bautista, O. and Mendez, F. (2018) Oscillatory Electroosmotic Flow of Power-Law Fluids in a Microchannel. International Journal of Mechanical & Mechatronics, 12, 773-776.
[25]  Baos, R., Arcos, J., Bautista, O. and Mendez, F. (2020) Slippage Effect on the Oscillatory Electroosmotic Flow of Power-Law Fluids in a Microchannel. Defect and Diffusion Forum, 399, 92-101.
https://doi.org/10.4028/www.scientific.net/DDF.399.92
[26]  Sun, L.X., Jian, Y.J., Chang, L., Zhang, H.Y. and Liu, Q.S. (2013) Alternating Current Electro-Osmotic Flow of the Maxwell Fluids through a Circular Micro-Pipe. Journal of Mechanics, 29, 233-240.
https://doi.org/10.1017/jmech.2012.138
[27]  Adegbie, K.S., Omowaye, A.J., Disu, A.B. and Animasaun, I.L. (2015) Heat and Mass Transfer of Upper Convected Maxwell Fluid Flow with Variable Thermo-Physical Properties over a Horizontal Melting Surface. Applied Mathematics, 6, 1362-1379.
https://doi.org/10.4236/am.2015.68129
[28]  Animasaun, I.L. and Omowaye, A.J. (2016) Upper-Convected Maxwell Fluid Flow with Variable Thermo-Physical Properties over a Melting Surface Situated in Hot Environment Subject to Thermal Stratification. Journal of Applied Fluid Mechanics, 9, 1777-1790.
https://doi.org/10.18869/acadpub.jafm.68.235.24939
[29]  Koríko, O.K., Adegbie, K.S., Omowaye, A.J. and Animasaun, I.L. (2016) Boundary Layer Analysis of Upper Convected Maxwell Fluid Flow with Variable Thermo-Physical Properties over a Melting Thermally Stratified Surface. FUTA Journal of Research in Sciences, 12, 287-298.
[30]  Chu, X. and Jian, Y.J. (2019) Magnetohydrodynamic Electroosmotic Flow of Maxwell Fluids with Patterned Charged Surface in Narrow Confinements. Journal of Physics D Applied Physics, 52, Article ID: 405003.
https://doi.org/10.1088/1361-6463/ab2b27
[31]  Escandón, J., Torres, D., Hernández, C. and Vargas, R. (2020) Start-Up Electroosmotic Flow of Multi-Layer Immiscible Maxwell Fluids in a Slit Microchannel. Micromachines, 11, 757.
https://doi.org/10.3390/mi11080757
[32]  Shah, N.A., Mahsud, Y., Aziz, M. and Tlili, I. (2020) Analytical Solutions for Unsteady Electrohydrodynamics Flows of Maxwell Fluids in Microchannels with Circular Cross Section. Physics of Fluids, 32, Article ID: 013107.
https://doi.org/10.1063/1.5128688
[33]  Liu, Q.S., Jian, Y.J. and Yang, L.G. (2011) Alternating Current Electroosmotic Flow of the Jeffreys Fluids through a Slit Microchannel. Physics of Fluids, 23, 381.
https://doi.org/10.1063/1.3640082
[34]  Gao, C.H. and Jian, Y.J. (2015) Analytical Solution of Magnetohydrodynamic Flow of Jeffrey Fluid through a Circular Microchannel. Journal of Molecular Liquids, 211, 803-811.
https://doi.org/10.1016/j.molliq.2015.08.004
[35]  Li, F.Q., Jian, Y.J., Xie, Z.Y., Liu, Y.B. and Liu, Q.S. (2017) Transient Alternating Current Electroosmotic Flow of a Jeffrey Fluid through a Polyelectrolyte-Grafted Nanochannel. RSC Advances, 7, 782-790.
https://doi.org/10.1039/C6RA24930B
[36]  Fan, Y. and Cheng, Q. (2013) Analysis of Current on Human Therapeutic Effects in Low Frequency Pulse. Journal of Henan Institute of Science and Technology, 41, 45-47.
[37]  Liu, Q.S., Jian, Y.J., Chang, L. and Yang, L.G. (2012) Alternating Current (AC) Electroosmotic Flow of Generalized Maxwell Fluids through a Circular Microtube. International Journal of Physical Sciences, 7, 5935-5941.
[38]  Zhang, X., Zhang, X., Liu, Z., Tao, C. and Quan, X. (2019) Pulse Current Electrodeposition of Manganese Metal from Sulfate Solution. Journal of Environmental Chemical Engineering, 7, Article ID: 103010.
https://doi.org/10.1016/j.jece.2019.103010
[39]  Li, C., Yun, T., Xu, J., Li, F. and Bao, H. (2020) Effect of Pulse Current on Bending Springback of Nanocrystalline Ni Foil. Journal of Materials Engineering and Performance, 29, 2368-2373.
https://doi.org/10.1007/s11665-020-04761-6
[40]  Pujiyulianto, E. and Suyitno (2021) Effect of Pulse Current in Manufacturing of Cardiovascular Stent Using EDM Die-Sinking. The International Journal of Advanced Manufacturing Technology, 112, 1-9.
https://doi.org/10.1007/s00170-020-06484-3
[41]  Yin, Z. (2014) Unsteady Electroosmotic Flow of Maxwell Fluids through a Parallel Plate Micro-Channel. Inner Mongolia University, Hohhot.
[42]  Bird, R.B., Stewart, W.E. and Lightfoot, E.N. (2002) Transport Phenomena, Second Edition. John Wiley & Sons, Inc., New York.
[43]  Na, R., Jian, Y.J., Chang, L., Su, J. and Liu, Q.S. (2013) Transient Electro-Osmotic and Pressure Driven Flows through a Microannulus. Open Journal of Fluid Dynamics, 3, 50-56.
https://doi.org/10.4236/ojfd.2013.32007
[44]  Hoog, F.D., Knight, J.H. and Stokes, A.N. (1982) An Improved Method for Numerical Inversion of Laplace Transforms. SIAM Journal on Scientific and Statistical, 3, 357-366. https://doi.org/10.1137/0903022
[45]  Li, X.X., Yin, Z., Jian, Y.J., Chang, L., Su, J. and Liu, Q.S. (2012) Transient Electro-Osmotic Flow of Generalized Maxwell Fluids through a Microchannel. Journal of Non-Newtonian Fluid Mechanics, 187-188, 43-47.
https://doi.org/10.1016/j.jnnfm.2012.09.005
[46]  Liu, Q.S., Jian, Y.J. and Yang, L.G. (2011) Time Periodic Electroosmotic Flow of the Generalized Maxwell Fluids between Two Micro-Parallel Plates. Journal of Non-Newtonian Fluid Mechanics, 166, 478-486.
https://doi.org/10.1016/j.jnnfm.2011.02.003

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413