全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Best Practices for Thermal Modeling in Microelectronics with Natural Convection Cooling: Sensitivity Analysis

DOI: 10.4236/jectc.2021.102002, PP. 15-33

Keywords: Computational Fluid Dynamics, Computational Heat Transfer, Microelectronic Packaging, Natural Convection, Radiation, Thermal Analysis, Thermal Management

Full-Text   Cite this paper   Add to My Lib

Abstract:

A detailed sensitivity study was carried out on various key parameters from a high precision numerical model of a microelectronic package cooled by natural convection, to provide rules for the thermal modeling of microelectronic packages subjected to natural convection heat transfer. An accurate estimate of the junction temperature, with an error of less than 1?C, was obtained compared to the experimental data for the vertical and horizontal orientations of the test vehicle in the JEDEC Still Air configuration. The sensitivity study showed that to have an accurate estimate of the temperature, the following elements should be present in the thermal model: radiation heat transfer in natural convection cooling; a computational fluid dynamics analysis to find realistic convection coefficients; detailed models of the high conductivity elements in the direction of the heat flow towards the environment; and finally precise values for the thicknesses of layers and the thermal properties of the substrate and the printed circuit board.

References

[1]  Garimella, S.V. (2006) Advances in Mesoscale Thermal Management Technologies for Microelectronics. Microelectronics Journal, 37, 1165-1185.
https://doi.org/10.1016/j.mejo.2005.07.017
[2]  Chiang, T.-Y., Banerjee, K. and Saraswat, K.C. (2002) Analytical Thermal Model for Multilevel VLSI Interconnects Incorporating via Effect. IEEE Electron Device Letters, 23, 31-33.
https://doi.org/10.1109/55.974803
[3]  Minkowycz, W.J. and Sparrow, E.M. (2000) Advances in Numerical Heat Transfer. Vol. 2, CRC Press, Taylor & Francis, Boca Raton.
[4]  Rzepka, S., Banerjee, K., Meusel, E. and Hu, C.M. (1998) Characterization of Self-Heating in Advanced VLSI Interconnect Lines Based on Thermal Finite Element Simulation. IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part A, 21, 406-411.
https://doi.org/10.1109/95.725203
[5]  Mizunuma, H., Lu, Y. and Yang, C. (2011) Thermal Modeling and Analysis for 3-D ICs with Integrated Microchannel Cooling. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 30, 1293-1306.
https://doi.org/10.1109/TCAD.2014.2334321
[6]  Liu, Z., Swarup, S., Tan, S.X., Chen, H. and Wang, H. (2014) Compact Lateral Thermal Resistance Model of TSVs for Fast Finite-Difference Based Thermal Analysis of 3-D Stacked ICs. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 33, 1490-1502.
https://doi.org/10.1109/TCAD.2014.2334321
[7]  Chen, W.-H., Cheng, H.-C. and Shen, H.-A. (2003) An Effective Methodology for Thermal Characterization of Electronic Packaging. IEEE Transactions on Components and Packaging Technologies, 26, 222-232.
https://doi.org/10.1109/TCAPT.2002.806180
[8]  Hwang, P.-W., Cheng, H.-C., Fang, J. and Li, J.-H. (2007) CFD-Based Thermal Characterization of Board-Level Microelectronic Devices under Natural Convection Cooling. 2007 International Microsystems, Packaging, Assembly and Circuits Technology, Taipei, 1-3 October 2007, 79-82.
https://doi.org/10.1109/IMPACT.2007.4433572
[9]  Hwu, F.-S., Sheu, G.-J. and Chen, J.-C. (2006) Thermal Modeling and Performance of LED Packaging for Illuminating Device. Proceedings of the 6th International Conference on Solid State Lighting, 6337, 327-333.
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/6337/1/Thermal-modeling-and-performance-of-LED-packaging-for-illuminating-device/10.1117/12.678949.short?SSO=1
[10]  Toure, M.K., Momar Souare, P., Allard, S., Foisy, B., Duchesne, E. and Sylvestre, J. (2018) CFD-Based Iterative Methodology for Modeling Natural Convection in Microelectronic Packages. 2018 19th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), Toulouse, 15-18 April 2018, 1-8.
https://doi.org/10.1109/EuroSimE.2018.8369862
[11]  Souare, P.M., Toure, M.K., Allard, S., et al. (2018) High Precision Numerical and Experimental Thermal Studies of Microelectronic Packages in Still Air Chamber Tests. 2018 7th Electronic System-Integration Technology Conference (ESTC), 18-21 September 2018, 1-8.
https://doi.org/10.1109/ESTC.2018.8546346
[12]  JEDEC (2008) JEDEC Standard JESD51-2A, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air). JEDEC Solid State Technology Association, Arlington.
[13]  Sikka, K., Wakil, J., Toy, H. and Liu, H. (2012) An Efficient Lid Design for Cooling Stacked Flip-Chip 3D Packages. 13th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, San Diego, 30 May-1 June 2012, 606-611.
https://doi.org/10.1109/ITHERM.2012.6231484
[14]  Cheng, H.-C., Chen, W.-H. and Cheng, H.-F. (2008) Theoretical and Experimental Characterization of Heat Dissipation in a Board-Level Microelectronic Component. Applied Thermal Engineering, 28, 575-588.
https://doi.org/10.1016/j.applthermaleng.2007.04.013
[15]  Dogruoz, M.B., Sathyamurthy, P. and Mathur, S. (2012) Sensitivity Analysis in Conjugate Heat Transfer for Electronics Cooling. 13th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, San Diego, 30 May-1 June 2012, 1219-1224.
https://doi.org/10.1109/ITHERM.2012.6231561
[16]  Gdhaidh, F.A., Hussain, K. and Qi, H.S. (2014) Numerical Study of Conjugate Natural Convection Heat Transfer Using One Phase Liquid Cooling. IOP Conference Series: Materials Science and Engineering, 65, 012012.
https://doi.org/10.1088/1757-899X/65/1/012012
[17]  ANSYS (2013) ANSYS Mechanical APDL Basic Analysis Guide, Release 15.0. ANSYS Inc., Canonsburg.
[18]  Huetz, J. and Petit, J.-P. (1990) Notions de transfert thermique par convection. Techniques de l'ingénieur, A1540, 47.
https://www.techniques-ingenieur.fr/base-documentaire/archives-th12/archives-plastiques-et-composites-tiaam/archive-1/notions-de-transfert-thermique-par-convection-a1540a/
[19]  ANSYS (2017) Ansys Fluent Theory Guide, Release 18.0. ANSYS Inc., Canonsburg.
[20]  Sylvestre, J. (2007) Integrated Modeling of C4 Interconnects. 2007 Proceedings 57th Electronic Components and Technology Conference, Sparks, 29 May-1 June 2007, 1084-1090.
https://doi.org/10.1109/ECTC.2007.373932
[21]  Lau, J.H., Wong, C.P., Prince, J. and Nakayama, W. (1999) Electronic Packaging: Design, Materials, Process & Reliability. McGraw-Hill, New York.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413