全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

轮轨接触自激振动的简化建模分析
Simplified Modeling Analysis of Wheel-Rail Contact Self-Excited Vibration

DOI: 10.12677/OJAV.2021.92007, PP. 53-64

Keywords: 曲线啸叫,自激振动,质量–弹簧–带,轮轨摩擦
Curve Squeal
, Self-Excited Vibration, Mass-On-Moving-Belt, Wheel-Rail Friction

Full-Text   Cite this paper   Add to My Lib

Abstract:

轮轨摩擦曲线下降特性引起的轮轨系统不稳定自激振动是曲线啸叫的主要产生机理,但轮轨系统不稳定自激振动的预测分析十分复杂,涉及到轮轨结构动力学特性、车辆曲线通过动力学特性、轮轨滚动摩擦特性及轮轨滚动接触等预测模型的建立。为了便于理解曲线啸叫噪声的产生机理,基于轮轨滚动摩擦特性和理想的质量–弹簧–带摩擦振动系统,建立了轮轨接触自激振动简化预测模型,预测了具有单个车轮模态的车轮通过曲线轨道时的轮轨间滑动引起的自激振动,分析其振动稳定性,并提出轮轨自激振动的控制措施。
The wheel-rail unstable self-excited vibration caused by the falling friction characteristic of the wheel-rail friction curve is the main mechanism of curve squeal. However, the prediction and analysis of the wheel-rail unstable self-excited vibration is very complicated, involving the prediction about wheel/rail structure dynamics, vehicle curve passing dynamics, wheel-rail rolling friction characteristics, and wheel-rail rolling contact. In order to facilitate the understanding of the generating mechanism of curve squeal, based on the wheel-rail rolling friction characteristics and the ideal mass-on-moving-belt vibration system, a simplified prediction model of wheel-rail contact self-excited vibration is established. When the wheel with a single wheel mode passes through a curved track, the self-excited vibration caused by wheel-rail sliding is predicted, and the stability of the wheel vibration is analyzed, and then the control measures for wheel-rail self-excited vibration are proposed.

References

[1]  Müller, B. and Oertli, J. (2006) Combating Curve Squeal: Monitoring Existing Applications. Journal of Sound & Vibra-tion, 293, 728-734.
https://doi.org/10.1016/j.jsv.2005.12.005
[2]  Thompson, D., Squicciarini, G. and Ding, B. (2016) A State-of-the-Art Review of Curve Squeal Noise: Phenomena, Mechanism, Modelling and Mitigation. IWRN 12: International Workshop on Railway Noise.
[3]  Ding, B., Squicciarini, G. and Thompson, D.J. (2016) Effects of Rail Dynamics and Friction Characteristics on Curve Squeal. Journal of Physics Conference Series, 744, Article ID: 012146.
https://doi.org/10.1088/1742-6596/744/1/012146
[4]  Rudd, M.J. (1976) Wheel/Rail Noise—Part II: Wheel Squeal. Journal of Sound & Vibration, 46, 381-394.
https://doi.org/10.1016/0022-460X(76)90862-2
[5]  Fingberg, U. (1990) A Model of Wheel-Rail Squealing Noise. Journal of Sound & Vibration, 143, 365-377.
https://doi.org/10.1016/0022-460X(90)90729-J
[6]  Chiello, O., Ayasse, J.B., Vincent, N., et al. (2006) Curve Squeal of Urban Rolling Stock—Part 3: Theoretical Model. Journal of Sound & Vibration, 293, 710-727.
https://doi.org/10.1016/j.jsv.2005.12.010
[7]  Huang, Z. (2007) Theoretical Modelling of Railway Curve Squeal. University of Southampton, Southampton.
[8]  Squicciarini, G., Usberti, S., Thompson, D.J., et al. (2015) Curve Squeal in the Presence of Two Wheel/Rail Contact Points. Noise and Vibration Mitigation for Rail Transportation Sys-tems. Springer, Berlin, Heidelberg, 603-610.
https://doi.org/10.1007/978-3-662-44832-8_71
[9]  Liu, X. and Meehan, P.A. (2015) Wheel Squeal Noise: A Simplified Model to Simulate the Effect of Rolling Speed and Angle of Attack. Journal of Sound & Vibration, 338, 184-198.
https://doi.org/10.1016/j.jsv.2014.10.031
[10]  赵悦. 有轨电车-嵌入式轨道曲线啸叫噪声试验、建模及控制研究[D]: [博士学位论文]. 成都: 西南交通大学, 2018.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413