全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Cellulose Stabilized Polyvinyl Acetate Emulsion: Review

DOI: 10.4236/ojopm.2021.112002, PP. 51-66

Keywords: Cellulose, Nanocellulose, Polyvinyl Acetate, Wood, Adhesive, Renewable Material

Full-Text   Cite this paper   Add to My Lib

Abstract:

The global energy crisis and overconsumption of non-renewable resources have depleted natural resources, climatic changes with global warming, and rise in sea level. The research on alternate sources and chemicals has resulted in the usage of green materials. These biomaterials are sustainable sources, biodegradable, and are abundant in nature. The replacement of petrochemicals with biopolymers has gained much importance in this aspect. Conventionally, polyvinyl alcohol is employed as a protective colloid in polyvinyl acetate adhesive. Polyvinyl alcohol has the limitation of petroleum origin, is replaced by biopolymers. Starch being a biopolymer, has gained interest in replacing polyvinyl alcohol as a stabilizer. Cellulose has a low cost, and the most abundant biomaterial finds application as a reinforcing agent in conventional adhesives. Exploring cellulose as a stabilizer for polyvinyl acetate emulsion polymerization with reinforcement has created potential applicability of cellulose in adhesives. Surface hydroxyl groups in cellulose act as sites for functionalization, making it material for the adhesive sector. This review paper aims to showcase biomaterials, namely starch, and cellulose, in the adhesive field. A detailed review of cellulose as functional filler for polyvinyl acetate emulsion adhesives has been explained.

References

[1]  Böhm, M., Salem, M.Z.M. and Srba, J. (2012) Formaldehyde Emission Monitoring from a Variety of Solid Wood, Plywood, Blockboard and Flooring Products Manufactured for Building and Furnishing Materials. Journal of Hazardous Materials, 221-222, 68-79.
https://doi.org/10.1016/j.jhazmat.2012.04.013
[2]  Arts, J.H.E., Rennen, M.A.J. and De Heer, C. (2006) Inhaled Formaldehyde: Evaluation of Sensory Irritation in Relation to Carcinogenicity. Regulatory Toxicology and Pharmacology, 44, 144-160.
https://doi.org/10.1016/j.yrtph.2005.11.006
[3]  Vineeth, S.K., Gadhave, R.V. and Gadekar, P.T. (2019) Nanocellulose Applications in Wood Adhesives—Review. Open Journal of Polymer Chemistry, 9, 63-75.
https://doi.org/10.4236/ojpchem.2019.94006
[4]  He, Z., Zhang, Y. and Wei, W. (2012) Formaldehyde and VOC Emissions at Different Manufacturing Stages of Wood-Based Panels. Building and Environment, 47, 197-204.
https://doi.org/10.1016/j.buildenv.2011.07.023
[5]  Roffael, E. (2006) Volatile Organic Compounds and Formaldehyde in Nature, Wood and Wood Based Panels. European Journal of Wood and Wood Products, 64, 144-149.
https://doi.org/10.1007/s00107-005-0061-0
[6]  Ayrilmis, N., Kwon, J.H., Lee, S.H., Han, T.H. and Park, C.W. (2016) Microfibrillated-Cellulose-Modified Urea-Formaldehyde Adhesives with Different F/U Molar Ratios for Wood-Based Composites. Journal of Adhesion Science and Technology, 30, 2032-2043.
https://doi.org/10.1080/01694243.2016.1175246
[7]  Veigel, S., Rathke, J., Weigl, M. and Gindl-Altmutter, W. (2012) Particle Board and Oriented Strand Board Prepared with Nanocellulose-Reinforced Adhesive. Journal of Nanomaterials, 2012, Article ID: 158503.
https://doi.org/10.1155/2012/158503
[8]  Vineeth, S.K., Gadhave, R.V. and Gadekar, P.T. (2019) Chemical Modification of Nanocellulose in Wood Adhesive: Review. Open Journal of Polymer Chemistry, 9, 86-99.
https://doi.org/10.4236/ojpchem.2019.94008
[9]  Hamed, S.A.A.K.M. and Hassan, M.L. (2019) A New Mixture of Hydroxypropyl Cellulose and Nanocellulose for Wood Consolidation. Journal of Cultural Heritage, 35, 140-144.
https://doi.org/10.1016/j.culher.2018.07.001
[10]  Mahrdt, E., Pinkl, S., Schmidberger, C., van Herwijnen, H.W.G., Veigel, S. and Gindl-Altmutter, W. (2016) Effect of Addition of Microfibrillated Cellulose to Urea-Formaldehyde on Selected Adhesive Characteristics and Distribution in Particle Board. Cellulose, 23, 571-580.
https://doi.org/10.1007/s10570-015-0818-5
[11]  Hon, D.N.-S. (1989) Cellulosic Adhesives. In: Richard, S.J.B., Hemingway, W. and Conner, A.H., Eds., Adhesives from Renewable Resources, ACS Symposium Series, American Chemical Society, Washington DC, 289-304.
https://doi.org/10.1021/bk-1989-0385.ch021
[12]  Zhang, X.J. (2000) Adhesion Properties of Cellulose Films. MRS. Online Proceeding Library Archive, 586, 1-29.
https://doi.org/10.1557/PROC-586-157
[13]  Gadhave, R.V., Mahanwar, P.A. and Gadekar, P.T. (2019) Study on Various Compositions of Polyvinyl Alcohol and Starch Blends by Crosslinking with Glyoxal. Open Journal of Polymer Chemistry, 9, 76-85.
https://doi.org/10.4236/ojpchem.2019.94007
[14]  Wang, Z., Li, Z., Gu, Z., Hong, Y. and Cheng, L. (2012) Preparation, Characterization and Properties of Starch-Based Wood Adhesive. Carbohydrate Polymers, 88, 699-706.
https://doi.org/10.1016/j.carbpol.2012.01.023
[15]  Wang, Z., et al. (2019) Improvement of the Bonding Properties of Cassava Starch-Based Wood Adhesives by Using Different Types of Acrylic Ester. International Journal of Biological Macromolecules, 126, 603-611.
https://doi.org/10.1016/j.ijbiomac.2018.12.113
[16]  Kalami, S., Chen, N., Borazjani, H. and Nejad, M. (2018) Comparative Analysis of Different Lignins as Phenol Replacement in Phenolic Adhesive Formulations. Industrial Crops and Products, 125, 520-528.
https://doi.org/10.1016/j.indcrop.2018.09.037
[17]  Yang, Z., Peng, H., Wang, W. and Liu, T. (2010) Lignin-Based Polycondensation Resins for Wood Adhesives. Journal of Applied Polymer Science, 116, 2658-2667.
[18]  Moubarik, A., Grimi, N., Boussetta, N. and Pizzi, A. (2013) Isolation and Characterization of Lignin from Moroccan Sugar Cane Bagasse: Production of Lignin-Phenol-Formaldehyde Wood Adhesive. Industrial Crops and Products, 45, 296-302.
https://doi.org/10.1016/j.indcrop.2012.12.040
[19]  Moubarik, A., Allal, A., Pizzi, A., Charrier, F. and Charrier, B. (2010) Characterization of a Formaldehyde-Free Cornstarch-Tannin Wood Adhesive for Interior Plywood. European Journal of Wood and Wood Products, 68, 427-433.
https://doi.org/10.1007/s00107-009-0379-0
[20]  Navarrete, P., et al. (2012) Low Formaldehyde Emitting Biobased Wood Adhesives Manufactured from Mixtures of Tannin and Glyoxylated Lignin. Journal of Adhesion Science and Technology, 26, 1667-1684.
https://doi.org/10.1163/156856111X618489
[21]  Gadhave, R.V., Dhawale, P.V. and Gadekar, P.T. (2020) Effect of Boric Acid on Poly Vinyl Alcohol-Tannin Blend and Its Application as Water-Based Wood Adhesive. Designed Monomers and Polymers, 23, 188-196.
https://doi.org/10.1080/15685551.2020.1826124
[22]  John, N. and Joseph, R. (1997) Studies on Wood-to-Wood Bonding Adhesives Based on Natural Rubber Latex. Journal of Adhesion Science and Technology, 11, 225-232.
https://doi.org/10.1163/156856197X00327
[23]  Thuraisingam, J., Mishra, P., Gupta, A., Soubam, T. and Piah, B.M. (2019) Novel Natural Rubber Latex/Lignin-Based Bio-Adhesive: Synthesis and Its Application on Medium Density Fiber-Board. Iranian Polymer Journal, 28, 283-290.
https://doi.org/10.1007/s13726-019-00696-5
[24]  Luo, J., Luo, J., Bai, Y., Gao, Q. and Li, J. (2016) A High Performance Soy Protein-Based Bio-Adhesive Enhanced with a Melamine/Epichlorohydrin Prepolymer and Its Application on Plywood. RSC Advances, 6, 67669-67676.
https://doi.org/10.1039/C6RA15597A
[25]  Vnučec, D., Kutnar, A. and Goršek, A. (2017) Soy-Based Adhesives for Wood-Bonding—A Review. Journal of Adhesion Science and Technology, 31, 910-931.
https://doi.org/10.1080/01694243.2016.1237278
[26]  Lei, H., Du, G., Wu, Z., Xi, X. and Dong, Z. (2014) Crosslinked Soy-Based Wood Adhesives for Plywood. International Journal of Adhesion and Adhesives, 50, 199-203.
https://doi.org/10.1016/j.ijadhadh.2014.01.026
[27]  Sulaiman, N.S., Hashim, R., Sulaiman, O., Nasir, M., Amini, M.H.M. and Hiziroglu, S. (2018) Partial Replacement of Urea-Formaldehyde with Modified Oil Palm Starch Based Adhesive to Fabricate Particleboard. International Journal of Adhesion and Adhesives, 84, 1-8.
https://doi.org/10.1016/j.ijadhadh.2018.02.002
[28]  Jang, Y., Huang, J. and Li, K. (2011) A New Formaldehyde-Free Wood Adhesive from Renewable Materials. International Journal of Adhesion and Adhesives, 31, 754-759.
https://doi.org/10.1016/j.ijadhadh.2011.07.003
[29]  Prasittisopin, L. and Li, K. (2010) A New Method of Making Particleboard with a Formaldehyde-Free Soy-Based Adhesive. Composites Part A: Applied Science and Manufacturing, 41, 1447-1453.
https://doi.org/10.1016/j.compositesa.2010.06.006
[30]  Pizzi, A. (2006) Recent Developments in Eco-Efficient Bio-Based Adhesives for Wood Bonding: Opportunities and Issues. Journal of Adhesion Science and Technology, 20, 829-846.
https://doi.org/10.1163/156856106777638635
[31]  Heinrich, L.A. (2019) Future Opportunities for Bio-Based Adhesives-Advantages beyond Renewability. Green Chemistry, 21, 1866-1888.
https://doi.org/10.1039/C8GC03746A
[32]  Vineeth, S.K., Gadhave, R.V. and Gadekar, P.T. (2020) Glyoxal Cross-Linked Polyvinyl Alcohol-Microcrystalline Cellulose Blend as a Wood Adhesive with Enhanced Mechanical, Thermal and Performance Properties. Materials International, 2, 277-285.
[33]  Gonzalez, G.S.M., Dimonie, V.L., Sudol, E.D., Yue, H.J., Klein, A. and El-Aasser, M.S. (1996) Characterization of Poly(vinyl alcohol) during the Emulsion Polymerization of Vinyl Acetate Using Poly(vinyl alcohol) as Emulsifier. Journal of Polymer Science Part A: Polymer Chemistry, 34, 849-862.
https://doi.org/10.1002/(SICI)1099-0518(19960415)34:5<849::AID-POLA14>3.0.CO;2-I
[34]  Nakamae, M., Yuki, K., Sato, T. and Maruyama, H. (1999) Preparation of Polymer Emulsions Using a Poly(vinyl alcohol) as Protective Colloid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 153, 367-372.
https://doi.org/10.1016/S0927-7757(98)00458-0
[35]  Qiao, L., Coveny, P.K. and Easteal, A.J. (2002) Modifications of Poly(vinyl alcohol) for Use in Poly(vinyl acetate) Emulsion Wood Adhesives. Pigment & Resin Technology, 31, 88-95.
https://doi.org/10.1108/03699420210420378
[36]  Mori, A., Kitayama, T., Takatani, M. and Okamoto, T. (2004) A Honeymoon-Type Adhesive for Wood Products Based on Acetoacetylated Poly(vinyl alcohol) and Diamines: Effect of Diamines and Degree of Acetoacetylation. Journal of Applied Polymer Science, 91, 2966-2972.
https://doi.org/10.1002/app.13491
[37]  D’Amico, S., Hrabalova, M., Müller, U. and Berghofer, E. (2010) Bonding of Spruce Wood with Wheat Flour Glue-Effect of Press Temperature on the Adhesive Bond Strength. Industrial Crops and Products, 31, 255-260.
https://doi.org/10.1016/j.indcrop.2009.11.001
[38]  Gadhave, R.V., Vineeth, S.K. and Gadekar, P.T. (2020) Crosslinking of Polyvinyl Alcohol/Starch Blends by Glutaraldehyde Sodium Bisulfite for Improvement in Thermal and Mechanical Properties. Journal of Materials and Environmental Science, 11, 704-712.
[39]  Vineeth, S.K., Gadhave, R.V. and Gadekar, P.T. (2021) Investigation of Crosslinking Ability of Sodium Metabisulphite with Polyvinyl Alcohol-Corn Starch Blend and Its Applicability as Wood Adhesive. Indian Chemical Engineer.
https://doi.org/10.1080/00194506.2021.1887769
[40]  Li, H., Qi, Y., Zhao, Y., Chi, J. and Cheng, S. (2019) Starch and Its Derivatives for Paper Coatings: A Review. Progress in Organic Coatings, 135, 213-227.
https://doi.org/10.1016/j.porgcoat.2019.05.015
[41]  Meshram, M.W., Patil, V.V., Mhaske, S.T. and Thorat, B.N. (2009) Graft Copolymers of Starch and Its Application in Textiles. Carbohydrate Polymers, 75, 71-78.
https://doi.org/10.1016/j.carbpol.2008.06.012
[42]  Zhang, Z., Macquarrie, D.J., Clark, J.H. and Matharu, A.S. (2014) Chemical Modification of Starch and the Application of Expanded Starch and Its Esters in Hot Melt Adhesive. RSC Advances, 4, 41947-41955.
https://doi.org/10.1039/C4RA08027K
[43]  Yin, Y., Li, J., Liu, Y. and Li, Z. (2005) Starch Crosslinked with Poly(vinyl alcohol) by Boric Acid. Journal of Applied Polymer Science, 96, 1394-1397.
https://doi.org/10.1002/app.21569
[44]  Samaha, S.H., Nasr, H.E. and Hebeish, A. (2005) Synthesis and Characterization of Starch-Poly(vinyl Acetate) Graft Copolymers and Their Saponified Form. Journal of Polymer Research, 12, 343-353.
https://doi.org/10.1007/s10965-004-7937-2
[45]  Lai, S.M., Don, T.M., Liu, Y.H. and Chiu, W.Y. (2006) Graft Polymerization of Vinyl Acetate onto Granular Starch: Comparison on the Potassium Persulfate and Ceric Ammonium Nitrate Initiated System. Journal of Applied Polymer Science, 102, 3017-3027.
https://doi.org/10.1002/app.24672
[46]  Gadhave, R.V., Mahanwar, P.A. and Gadekar, P.T. (2018) Starch Stabilized Polyvinyl Acetate Emulsion: Review. Polymers from Renewable Resources, 9, 75-84.
https://doi.org/10.1177/204124791800900203
[47]  Wang, Z., Gu, Z., Li, Z., Hong, Y. and Cheng, L. (2013) Effects of Emulsifier on the Bonding Performance and Freeze-Thaw Stability of Starch-Based Wood Adhesive. Cellulose, 20, 2583-2590.
https://doi.org/10.1007/s10570-013-9984-5
[48]  Tayeb, A.H., Amini, E., Ghasemi, S. and Tajvidi, M. (2018) Cellulose Nanomaterials-Binding Properties and Applications: A Review. Molecules, 23, 1-24.
https://doi.org/10.3390/molecules23102684
[49]  Grüneberger, F., Künniger, T., Zimmermann, T. and Arnold, M. (2014) Nanofibrillated Cellulose in Wood Coatings: Mechanical Properties of Free Composite Films. Journal of Materials Science, 49, 6437-6448.
https://doi.org/10.1007/s10853-014-8373-2
[50]  Singh, H.K., Patil, T., Vineeth, S.K., Das, S., Pramanik, A. and Mhaske, S.T. (2019) Isolation of Microcrystalline Cellulose from Corn Stover with Emphasis on Its Constituents: Corn Cover and Corn Cob. Materials Today: Proceedings, 5, 8299-8306.
https://doi.org/10.1016/j.matpr.2019.12.065
[51]  Davoudpour, Y., et al. (2015) Optimization of High Pressure Homogenization Parameters for the Isolation of Cellulosic Nanofibers Using Response Surface Methodology. Industrial Crops and Products, 74, 381-387.
https://doi.org/10.1016/j.indcrop.2015.05.029
[52]  Lamaming, J., Hashim, R., Sulaiman, O., Leh, C.P., Sugimoto, T. and Nordin, N.A. (2015) Cellulose Nanocrystals Isolated from Oil Palm Trunk. Carbohydrate Polymers, 127, 202-208.
https://doi.org/10.1016/j.carbpol.2015.03.043
[53]  Candido, R.G. and Gonçalves, A.R. (2019). Evaluation of Two Different Applications for Cellulose Isolated from Sugarcane Bagasse in a Biorefinery Concept. Industrial Crops and Products, 142, Article ID: 111616.
https://doi.org/10.1016/j.indcrop.2019.111616
[54]  Ferreira, F.V., Mariano, M., Rabelo, S.C., Gouveia, R.F. and Lona, L.M.F. (2018) Isolation and Surface Modification of Cellulose Nanocrystals from Sugarcane Bagasse Waste: From a Micro- to a Nano-Scale View. Applied Surface Science, 436, 1113-1122.
https://doi.org/10.1016/j.apsusc.2017.12.137
[55]  Moon, R.J., Martini, A., Nairn, J., Simonsen, J. and Youngblood, J. (2011) Cellulose Nanomaterials Review: Structure, Properties and Nanocomposites. Chemical Society Reviews, 40, 3941-3994.
https://doi.org/10.1039/c0cs00108b
[56]  George, J. and Sabapathi, S.N. (2015) Cellulose Nanocrystals: Synthesis, Functional Properties, and Applications. Nanotechnology, Science and Applications, 8, 45-54.
https://doi.org/10.2147/NSA.S64386
[57]  Mondal, S. (2017) Preparation, Properties and Applications of Nanocellulosic Materials. Carbohydrate Polymers, 163, 301-316.
https://doi.org/10.1016/j.carbpol.2016.12.050
[58]  Dastjerdi, Z., Cranston, E.D. and Dubé, M.A. (2018) Pressure Sensitive Adhesive Property Modification Using Cellulose Nanocrystals. International Journal of Adhesion and Adhesives, 81, 36-42.
https://doi.org/10.1016/j.ijadhadh.2017.11.009
[59]  Veigel, S., Müller, U., Keckes, J., Obersriebnig, M. and Gindl-Altmutter, W. (2011) Cellulose Nanofibrils as Filler for Adhesives: Effect on Specific Fracture Energy of Solid Wood-Adhesive Bonds. Cellulose, 18, 1227-1237.
https://doi.org/10.1007/s10570-011-9576-1
[60]  Gindl-Altmutter, W. and Veigel, S. (2014) Nanocellulose-Modified Wood Adhesives. In: Oksman, K., Mathew, A.P., Bismarck, A., Rojas, O. and Sain, M., Eds., Handbook of Green Materials: Bionanomaterials: Separation Processes, Characterization and Properties, World Scientific Publishing, Singapore, 253-264.
https://doi.org/10.1142/9789814566469_0031
[61]  Cataldi, A., Berglund, L., Deflorian, F. and Pegoretti, A. (2015) A Comparison between Micro- and Nanocellulose-Filled Composite Adhesives for Oil Paintings Restoration. Nanocomposites, 1, 195-203.
https://doi.org/10.1080/20550324.2015.1117239
[62]  Tajvidi, M., Gardner, D.J. and Bousfield, D.W. (2016) Cellulose Nanomaterials as Binders: Laminate and Particulate Systems. Journal of Renewable Materials, 4, 365-376.
https://doi.org/10.7569/JRM.2016.634103
[63]  Tang, J., Lee, M.F.X., Zhang, W., Zhao, B., Berry, R.M. and Tam, K.C. (2014) Dual Responsive Pickering Emulsion Stabilized by Poly[2-(dimethylamino) ethyl methacrylate] Grafted Cellulose Nanocrystals. Biomacromolecules, 15, 3052-3060.
https://doi.org/10.1021/bm500663w
[64]  Hu, Z., Ballinger, S., Pelton, R. and Cranston, E.D. (2015) Surfactant-Enhanced Cellulose Nanocrystal Pickering Emulsions. Journal of Colloid and Interface Science, 439, 139-148.
https://doi.org/10.1016/j.jcis.2014.10.034
[65]  Jiang, W., et al. (2018) Effect of Cellulose Nanofibrils on the Bond Strength of Polyvinyl Acetate and Starch Adhesives for Wood. BioResources, 13, 2283-2292.
https://doi.org/10.15376/biores.13.2.2283-2292
[66]  López-Suevos, F., Eyholzer, C., Bordeanu, N. and Richter, K. (2010) DMA Analysis and Wood Bonding of PVAc Latex Reinforced with Cellulose Nanofibrils. Cellulose, 17, 387-398.
https://doi.org/10.1007/s10570-010-9396-8
[67]  Pakdel, A.S., Gabriel, V., Berry, R.M., et al. (2020) A Sequential Design Approach for in Situ Incorporation of Cellulose Nanocrystals in Emulsion-Based Pressure Sensitive Adhesives. Cellulose, 27, 10837-10853.
https://doi.org/10.1007/s10570-020-03060-6
[68]  Cui, J., et al. (2015) Enhancement of Mechanical Strength of Particleboard Using Environmentally Friendly Pine (Pinus pinaster L.) Tannin Adhesives with Cellulose Nanofibers. Annals of Forest Science, 72, 27-32.
https://doi.org/10.1007/s13595-014-0392-2
[69]  Pu, J.W., Zhang, H., Zhang, J., Song, S.P. and Wu, G.F. (2011) Modified Nanocrystalline Cellulose from Two Kinds Emission and Bonding Strength of Urea-Fromaldehyde Resin Adhesive. BioResources, 6, 4430-4438.
[70]  Gao, Q., Li, J., Shi, S.Q., Liang, K. and Zhang, X. (2012) Soybean Meal-Based Adhesive Reinforced with Cellulose Nanowhiskers. BioResources, 7, 5622-5633.
https://doi.org/10.15376/biores.7.4.5622-5633
[71]  Kojima, Y., et al. (2013) Binding Effect of Cellulose Nanofibers in Wood Flour Board. Journal of Wood Science, 59, 396-401.
https://doi.org/10.1007/s10086-013-1348-0
[72]  Kojima, Y., et al. (2014) Evaluation of Binding Effects in Wood Flour Board Containing Ligno-Cellulose Nanofibers. Materials (Basel), 6, 6853-6864.
https://doi.org/10.3390/ma7096853
[73]  Ayrilmis, N., Lee, Y.K., Kwon, J.H., Han, T.H. and Kim, H.J. (2016) Formaldehyde Emission and VOCs from LVLs Produced with Three Grades of Urea-Formaldehyde Resin Modified with Nanocellulose. Building and Environment, 97, 82-87.
https://doi.org/10.1016/j.buildenv.2015.12.009
[74]  Atta-Obeng, E., Via, B.K. and Fasina, O. (2012) Effect of Microcrystalline Cellulose, Species, and Particle Size on Mechanical and Physical Properties of Particleboard. Wood and Fiber Science, 44, 227-235.
[75]  Hunt, J.F., Leng, W. and Tajvidi, M. (2017) Vertical Density Profile and Internal Bond Strength of Wet-Formed Particleboard Bonded with Cellulose Nanofibrils. Wood and Fiber Science, 49, 413-423.
[76]  Diop, C.I.K., Tajvidi, M., Bilodeau, M.A., Bousfield, D.W. and Hunt, J.F. (2017) Evaluation of the Incorporation of Lignocellulose Nanofibrils as Sustainable Adhesive Replacement in Medium Density Fiberboards. Industrial Crops and Products, 109, 27-36.
https://doi.org/10.1016/j.indcrop.2017.08.004
[77]  Amini, E., Tajvidi, M., Gardner, D.J. and Bousfield, D.W. (2017) Utilization of Cellulose Nanofibrils as a Binder for Particleboard Manufacture. BioResources, 12, 4093-4110.
https://doi.org/10.15376/biores.12.2.4093-4110
[78]  Cheng, H.N., Kilgore, K., Ford, C., Fortier, C., Dowd, M.K. and He, Z. (2019) Cottonseed Protein-Based Wood Adhesive Reinforced with Nanocellulose. Journal of Adhesion Science and Technology, 33, 1357-1368.
https://doi.org/10.1080/01694243.2019.1596650
[79]  Oh, M., Ma, Q., Simsek, S., Bajwa, D. and Jiang, L. (2019) Comparative Study of Zein- and Gluten-Based Wood Adhesives Containing Cellulose Nano Fibers and Crosslinking Agent for Improved Bond Strength. International Journal of Adhesion and Adhesives, 92, 44-57.
https://doi.org/10.1016/j.ijadhadh.2019.04.004
[80]  Zhang, H., Liu, P., Musa, S., Mai, C. and Zhang, K. (2019) Dialdehyde Cellulose as a Bio-Based Robust Adhesive for Wood Bonding. ACS Sustainable Chemistry & Engineering, 7, 10452-10459.
https://doi.org/10.1021/acssuschemeng.9b00801
[81]  Kwon, J.H., Lee, S., Ayrilmis, H. and Hyung, N.T. (2015) Tensile Shear Strength of Wood Bonded with Urea-Formaldehyde with Different Amounts of Microfibrillated Cellulose. International Journal of Adhesion and Adhesives, 60, 88-91.
[82]  Chen, H., Nair, S.S., Chauhan, P. and Yan, N. (2019) Lignin Containing Cellulose Nanofibril Application in pMDI Wood Adhesives for Drastically Improved Gap-Filling Properties with Robust Bondline Interfaces. Chemical Engineering Journal, 360, 393-401.
https://doi.org/10.1016/j.cej.2018.11.222
[83]  Gadhave, R.V., Vineeth, S.K., Mahanwar, P.A. and Pradeep, T. (2020) Effect of Addition of Boric Acid on Thermo-Mechanical Properties of Microcrystalline Cellulose/Polyvinyl Alcohol Blend and Applicability as Wood Adhesive. Journal of Adhesion Science and Technology, 1-15.
[84]  Zhang, Y., et al. (2018) Improvement in Wood Bonding Strength of Poly(vinyl acetate-butyl acrylate) Emulsion by Controlling the Amount of Redox Initiator. Materials (Basel), 11, 89.
https://doi.org/10.3390/ma11010089
[85]  Kaboorani, A. and Riedl, B. (2011) Improving Performance of Polyvinyl Acetate (PVA) as a Binder for Wood by Combination with Melamine Based Adhesives. International Journal of Adhesion and Adhesives, 31, 605-611.
https://doi.org/10.1016/j.ijadhadh.2011.06.007
[86]  Kim, S. and Kim, H.J. (2005) Effect of Addition of Polyvinyl Acetate to Melamine-Formaldehyde Resin on the Adhesion and Formaldehyde Emission in Engineered Flooring. International Journal of Adhesion and Adhesives, 25, 456-461.
https://doi.org/10.1016/j.ijadhadh.2005.01.001
[87]  López-Suevos, F. and Frazier, C.E. (2006) Fracture Cleavage Analysis of PVAc Latex Adhesives: Influence of Phenolic Additives. Holzforschung, 60, 313-317.
https://doi.org/10.1515/HF.2006.050
[88]  Khan, U., May, P., Porwal, H., Nawaz, K. and Coleman, J.N. (2013) Improved Adhesive Strength and Toughness of Polyvinyl Acetate Glue on Addition of Small Quantities of Graphene. ACS Applied Materials & Interfaces, 5, 1423-1428.
https://doi.org/10.1021/am302864f
[89]  Kajtna, J. and Šebenik, U. (2017) Novel Acrylic/Nanocellulose Microsphere with Improved Adhesive Properties. International Journal of Adhesion and Adhesives, 74, 100-106.
https://doi.org/10.1016/j.ijadhadh.2016.11.013
[90]  Gong, G., Pyo, J., Mathew, A.P. and Oksman, K. (2011) Tensile Behavior, Morphology and Viscoelastic Analysis of Cellulose Nanofiber-Reinforced (CNF) Polyvinyl Acetate (PVAc). Composites Part A, 42, 1275-1282.
https://doi.org/10.1016/j.compositesa.2011.05.009
[91]  Geng, S., Haque, M. and Oksman, K. (2016) Crosslinked Poly(vinyl acetate) (PVAc) Reinforced with Cellulose Nanocrystals (CNC): Structure and Mechanical Properties. Composites Science and Technology, 126, 35-42.
https://doi.org/10.1016/j.compscitech.2016.02.013
[92]  Kaboorani, A., Riedl, B., Blanchet, P., Fellin, M., Hosseinaei, O. and Wang, S. (2012) Nanocrystalline Cellulose (NCC): A Renewable Nano-Material for Polyvinyl Acetate (PVA) Adhesive. European Polymer Journal, 48, 1829-1837.
https://doi.org/10.1016/j.eurpolymj.2012.08.008
[93]  Chaabouni, O. and Boufi, S. (2017) Cellulose Nanofibrils/Polyvinyl Acetate Nanocomposite Adhesives with Improved Mechanical Properties. Carbohydrate Polymers, 156, 64-70.
https://doi.org/10.1016/j.carbpol.2016.09.016
[94]  Aydemir, D., Gündüz, G., Aşik, N. and Wang, A. (2016) The Effects of Poly(vinylacetate) Filled with Nanoclay and Cellulose Nanofibrils on Adhesion Strength of Poplar and Scots Pine Wood. Drvna Industrija, 67, 17-24.
https://doi.org/10.5552/drind.2016.1441
[95]  Boufi, S., Mabrouk, A.B. and Dufresne, A. (2019) Cellulose Nanocrystal as Ecofriendly Stabilizer for Emulsion Polymerization and Its Application for Waterborne Adhesive. Carbohydrate Polymers, 229, Article ID: 115504.
https://doi.org/10.1016/j.carbpol.2019.115504

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133