全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Quantum Mechanical Calculations of High-Tc Fe-Superconductors

DOI: 10.4236/jqis.2021.112007, PP. 84-98

Keywords: Superconductivity, Fe-Based Superconductors, Embedded Cluster Method, MP2 Method, NBO Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

In introduction we presented a short historical survey of the discovery of superconductivity (SC) up to the Fe-based materials that are not superconducting in a pure state. For this type of material, the transition to SC state occurs in presence of different dopants. Recently in the Fe-based materials at high pressures, the SC was obtained at room critical temperature. In this paper, we present the results of calculations of the isolated cluster representing infinitum crystal with Rh and Pd as dopants. All calculations are performed with the suite of programs Gaussian 16. The obtained results are compared with our previous results obtained for embedded cluster using Gaussian 09. In the case of embedded cluster our methodology of the Embedded Cluster Method at the MP2 electron correlation level was applied. In the NBO population analysis two main features are revealed: the independence of charge density transfer from the spin density transfer and, the presence of orbitals with electron density but without spin density. This is similar to the Anderson’s spinless holon and confirms our conclusions in previous publications that the possible mechanism for superconductivity can be the RVB mechanism proposed by Anderson for high Tc superconductivity in cuprates.

References

[1]  Kamerling Onnes, H. (1911) On the Change in the Resistance of Pure Metals at Very Low Temperatures. III The Resistance of Platinum at Helium Temperatures. Communications, Leiden, 124c, 799-802.
[2]  Heisenberg, W. (1925) Quantum-Theoretical Re-Interpretation of Kinematic and Mechanical Relations. Zeitschrift für Physik, 33, 879-893.
https://doi.org/10.1007/BF01328377
[3]  Born, M. and Jordan, P. (1925) Zur Quantenmechanik. Zeitschrift für Physik, 34, 858-888.
https://doi.org/10.1007/BF01328531
[4]  de Broglie, L. (1925) Recherches sur la Théorie des Quanta. Annals of Physics, 3, 122-128.
https://doi.org/10.1051/anphys/192510030022
[5]  Schrödinger, E. (1926) On the Relation between the Quantum Mechanics of Heisenberg, Born, and Jordan, and That of Schrödinger. Annals of Physics, 79, 361-376, 489-527, 734-756.
https://doi.org/10.1002/andp.19263840804
[6]  Schrödinger, E. (1926) An Undulatory Theory of the Mechanics of Atoms and Molecules. Physical Review, 28, 1049-1070.
https://doi.org/10.1103/PhysRev.28.1049
[7]  Pauli, W. (1925) Űber den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren. Zeitschrift für Physik, 31, 765-783.
https://doi.org/10.1007/BF02980631
[8]  Dirac, P.A.M. (1926) On the Theory of Quantum Mechanics. Proceedings of the Royal Society of London. Series A, 112, 661-677.
https://doi.org/10.1098/rspa.1926.0133
[9]  Dirac, P.A.M. (1927) The Quantum Theory of the Emission and Absorption of Radiation. Proceedings of the Royal Society of London. Series A, 114, 243-265.
https://doi.org/10.1098/rspa.1927.0039
[10]  Bardeen, J., Cooper, L.N. and Schrieffer, J.R. (1957) Microscopic Theory of Superconductivity. Physical Review, 106, 162-164.
https://doi.org/10.1103/PhysRev.106.162
[11]  Bardeen, J., Cooper, L.N. and Schrieffer, J.R. (1957) Theory of Superconductivity. Physical Review, 108, 1175-1204.
https://doi.org/10.1103/PhysRev.108.1175
[12]  Gor’kov, L.P. (1959) Microscopic Derivation of the Ginzburg-Landau Equations in the Theory of Superconductivity. Soviet Physics JETP, 36, 1364-1367.
[13]  Ginzburg, V.L. and Landau, L.D. (1950) On the Theory of Superconductivity. Soviet Physics JETP, 20, 1064.
[14]  Ginzburg, L.D. and Landau L.D. (2009) On the Theory of Superconductivity. In: On Superconductivity and Superfluidity, Springer, Berlin, 113-137.
[15]  éliashberg, G.M. (1960) Interactions between Electrons and Lattice Vibrations in a Superconductor. Soviet Physics JETP, 11, 696-702.
[16]  Bednorz, J.G. and Müller, K.A. (1986) Possible High Tc Superconductivity in the Ba-La-Cu-O System. Zeitschrift für Physik B—Condensed Matter, 64, 189-193.
https://doi.org/10.1007/BF01303701
[17]  Bucher, B., Karpinski, J., Kaldis, E. and Wachter, P. (1989) Strong Pressure Dependence of Tc of the New 80 K Phase YBa2Cu4O8+x. Physica C: Superconductivity, 157, 478.
https://doi.org/10.1016/0921-4534(89)90273-6
[18]  Hor, P.H., Gao, L., Meng, R.L., Huang, Z.J., et al. (1987) High-Pressure Study of the New Y-Ba-Cu-O Superconducting Compound System. Physical Review Letters, 58, 911.
https://doi.org/10.1103/PhysRevLett.58.911
[19]  Han, S.H., et al. (1988) Pressure Effects on the New High-Tc Superconductor Tl-Ba-Ca-Cu-O. Physica C: Superconductivity, 156, 113-115.
https://doi.org/10.1016/0921-4534(88)90114-1
[20]  Maple, M.B., Ayoub, N.Y., BjØrnholm, T., Early, E.A., et al. (1989) Magnetism, Specific Heat, and Pressure-Dependent Resistivity of the Electron-Doped Compounds Ln2-xMxCuO4-y (Ln = Pr, Nd, Sm, Eu, Gd; M = Ce, Th). Physica C: Superconductivity and Its Applications, 162-164, 296.
https://doi.org/10.1016/0921-4534(89)91029-0
[21]  Drozdov, A.P., Eremets, M.I., Troyan, I.A., Ksenofontov, V. and Shylin, S.I. (2015) Conventional Superconductivity at 203 K at High Pressures in the Sulfur Hydride System. Nature, 525, 73-76.
https://doi.org/10.1038/nature14964
[22]  Snider, E., Dasenbrock-Gammon, N., McBride, R., Debessai, M., et al. (2020) Room-Temperature Superconductivity in a Carbonaceous Sulfur Hydride. Nature, 586, 373-377.
https://doi.org/10.1038/s41586-020-2801-z
[23]  Kamihara, Y., Watanabe, M. and Hosono, H. (2008) Iron-Based Layered Superconductor La[O1-xFx]FeAs (x = 0.05-0.12) with Tc = 26 K. Journal of the American Chemical Society, 130, 3296-3297.
https://doi.org/10.1021/ja800073m
[24]  Takahashi, H., Igawa, K., Arii, K., Kamihara, Y., Hirano, M. and Hosono, H. (2008) Superconductivity at 43 K in an Iron-Based Layered Compound LaO1-xFxFeAs. Nature (London), 453, 376-378.
https://doi.org/10.1038/nature06972
[25]  Stewart, R.G. (2011) Superconductivity in Iron Compounds. Reviews of Modern Physics, 83, 1589.
https://doi.org/10.1103/RevModPhys.83.1589
[26]  Rotter, M., Tegel, M. and Johrendt, D. (2008) Superconductivity at 38 K in the Iron Arsenide (Ba1-xKx)Fe2As2. Physical Review Letters, 101, Article ID: 107006.
https://doi.org/10.1103/PhysRevLett.101.107006
[27]  Sefat, A.S., Jin, R., McGuire, M.A., Sales, B.C., Singh, D.J. and Mandrus, D. (2008) Superconductivity at 22 K in Co-Doped BaFe2As2 Crystals. Physical Review Letters, 101, Article ID: 117004.
https://doi.org/10.1103/PhysRevLett.101.117004
[28]  Ni, N., Tillman, M.E., Yan, J.-Q., Kracher, A., Hannahs, S.T., Bud’ko, S.L. and Canfield, P.C. (2008) Effects of Co Substitution on Thermodynamic and Transport Properties and Anisotropic Hc2 in Ba(Fe1-xCox)2As2 Single Crystals. Physical Review B, 78, Article ID: 214515.
https://doi.org/10.1103/PhysRevB.78.214515
[29]  Kondo, T., Fernandes, R.M., Khasanov, R., Liu, Ch., Palczewski, A.D., et al. (2010) Rapid Communication Unexpected Fermi-Surface Nesting in the Pnictide Parent Compounds BaFeFe2As2 and CaFeFe2As2 Revealed by Angle-Resolved Photoemission Spectroscopy. Physical Review B, 81, Article ID: 060507.
https://doi.org/10.1103/PhysRevB.81.060507
[30]  Canfield, P.C., Bud’ko, S.L., Ni, N., Yan, J.Q. and Kracher, A. (2009) Decoupling of the Superconducting and Magnetic/Structural Phase Transitions in Electron-Doped BaFe2As2. Physical Review B, 80, Article ID: 060501.
https://doi.org/10.1103/PhysRevB.80.060501
[31]  Mun, E.D., Bud’ko, S.L., Ni, N., Thaler, A.N. and Canfield, P.C. (2009) Thermoelectric Power and Hall Coefficient Measurements on Ba( Fe1-xTx)2As2 (T = Co and Cu). Physical Review B, 80, Article ID: 054517.
https://doi.org/10.1103/PhysRevB.80.054517
[32]  Ni, N., Thaler, A., Kracher, A., Yan, J.Q., Bud’ko, S.L. and Canfield, P.C. (2009) Phase Diagrams of Ba(Fe1-xMx)2As2 Single Crystals (M = Rh and Pd). Physical Review B, 80, Article ID: 024511.
https://doi.org/10.1103/PhysRevB.80.024511
[33]  Mazin, I.I., Singh, D.J., Johannes, M.D. and Du, M.H. (2008) Unconventional Superconductivity with a Sign Reversal in the Order Parameter of LaFeAsO1-xFx. Physical Review Letters, 101, Article ID: 057003.
https://doi.org/10.1103/PhysRevLett.101.057003
[34]  Mazin, I.I. and Schmalian, J. (2009) Pairing Symmetry and Pairing State in Ferropnictides: Theoretical Overview. Physica C: Superconductivity, 469, 614-627.
https://doi.org/10.1016/j.physc.2009.03.019
[35]  Singh, D.J. and Du, M.H. (2008) Density Functional Study of LaFeAsO1-xFx: A Low Carrier Density Superconductor near Itinerant Magnetism. Physical Review Letters, 100, Article ID: 237003.
https://doi.org/10.1103/PhysRevLett.100.237003
[36]  Norman, M.R. (2008) High-Temperature Superconductivity in the Iron Pnictides. Physics, 1, 21.
https://doi.org/10.1103/Physics.1.21
[37]  Norman, M.R. (2011) The Challenge of Unconventional Superconductivity. Science, 332, 196-200.
https://doi.org/10.1126/science.1200181
[38]  Mazin, I.I. (2010) Superconductivity Gets an Iron Boost. Nature, 464, 183-186.
https://doi.org/10.1038/nature08914
[39]  Wang, F. and Lee, D.H. (2011) The Electron-Pairing Mechanism of Iron-Based Superconductors. Science, 332, 200.
https://doi.org/10.1126/science.1200182
[40]  Chubukov, A. (2012) Pairing Mechanism in Fe-Based Superconductors. Annual Review of Condensed Matter Physics, 3, 57-92.
https://doi.org/10.1146/annurev-conmatphys-020911-125055
[41]  Kordyuk, A.A. (2012) Iron-Based Superconductors: Magnetism, Superconductivity, and Electronic Structure (Review Article). Low Temperature Physics, 38, 888.
https://doi.org/10.1063/1.4752092
[42]  Baquero, R. (2014) La Superconductividad: Sus orígenes, sus teorías, sus problemas candentes hoy. Revista de la Academia Colombiana de Ciencias, 38, 18-33.
https://doi.org/10.18257/raccefyn.152
[43]  Prozorov, R., Kończykowski, M., Tanatar, M.A., Wen, H.H., Fernandes, R.M. and Canfield, P.C. (2019) Interplay between Superconductivity and Itinerant Magnetism in Underdoped Ba1-xKxFe2As2 (x = 0.2) Probed by the Response to Controlled Point-Like Disorder. NPJ Quantum Materials, 4, Article No. 34.
https://doi.org/10.1038/s41535-019-0171-2
[44]  Kuroki, K., Onari, S., Arita, R., Usui, H., Tanaka, Y., Kontani, H. and Aoki, H. (2008) Unconventional Pairing Originating from the Disconnected Fermi Surfaces of Superconducting LaFeAsO1-xFx. Physical Review Letters, 101, Article ID: 087004.
https://doi.org/10.1103/PhysRevLett.101.087004
[45]  Takimoto, T., Hotta, T. and Ueda, K. (2004) Strong-Coupling Theory of Superconductivity in a Degenerate Hubbard Model. Physical Review B, 69, Article ID: 104504.
https://doi.org/10.1103/PhysRevB.69.104504
[46]  Onari, S. and Kontani, H. (2009) Violation of Anderson’s Theorem for the Sign-Reversing s-Wave State of Iron-Pnictide Superconductors. Physical Review Letters, 103, Article ID: 177001.
https://doi.org/10.1103/PhysRevLett.103.177001
[47]  Kontani, H. and Onari, S. (2010) Orbital-Fluctuation-Mediated Superconductivity in Iron Pnictides: Analysis of the Five-Orbital Hubbard-Holstein Model. Physical Review Letters, 104, Article ID: 157001.
https://doi.org/10.1103/PhysRevLett.104.157001
[48]  Si Q. and Abrahams, E. (2008) Strong Correlations and Magnetic Frustration in the High Tc Iron Pnictides. Physical Review Letters, 101, Article ID: 076401.
https://doi.org/10.1103/PhysRevLett.101.076401
[49]  Chen, W.Q., Yang, K.Y., Zhou, Y. and Hang, F.C., (2009) Strong Coupling Theory for Superconducting Iron Pnictides. Physical Review Letters, 102, Article ID: 047006.
https://doi.org/10.1103/PhysRevLett.102.047006
[50]  Qazilbash, M.M., Hamlin, J.J., Baumbach, R.E., Zhang, L., Singh, D.J., Maple, M.B. and Basov, D.N. (2009) Electronic Correlations in the Iron Pnictides. Nature Physics, 5, 647-650.
https://doi.org/10.1038/nphys1343
[51]  Haule, K., Shim, J.H. and Kotliar, G. (2008) Correlated Electronic Structure of LaO1-xFxFeAs. Physical Review Letters, 100, Article ID: 226402.
https://doi.org/10.1103/PhysRevLett.100.226402
[52]  Laad, M.S., Craco, L., Leoni, S. and Rosner, H (2009) Electrodynamic Response of Incoherent Metals: Normal Phase of Iron Pnictides. Physical Review B, 79, Article ID: 024515.
https://doi.org/10.1103/PhysRevB.79.024515
[53]  Lee, P.A., Nagaosa, N. and Wen, X.G. (2006) Doping a Mott Insulator: Physics of High-Temperature Superconductivity. Reviews of Modern Physics, 78, 17.
https://doi.org/10.1103/RevModPhys.78.17
[54]  Anderson, P.W. (1987) The Resonating Valence Bond State in La2CuO4 and Superconductivity. Science, 235, 1196-1198.
https://doi.org/10.1126/science.235.4793.1196
[55]  Kivelson, S.A., Rokhsar, D.S. and Sethna, J.P. (1987) Topology of the Resonating Valence-Bond State: Solitons and High-Tc Superconductivity. Physical Review B, 35, 8865.
https://doi.org/10.1103/PhysRevB.35.8865
[56]  Anderson, P.W., Baskaran, G., Zou, Z. and Hsu, T. (1987) Resonating-Valence-Bond Theory of Phase Transitions and Superconductivity in La2CuO4-Based Compounds. Physical Review Letters, 58, 2790.
https://doi.org/10.1103/PhysRevLett.58.2790
[57]  Soullard, J., Pérez-Enriquez, R. and Kaplan, I. (2015) Comparative Study of Pure and Co-Doped BaFe2As2. Physical Review B, 91, Article ID: 184517.
https://doi.org/10.1103/PhysRevB.91.184517
[58]  Soullard, J. and Kaplan, I. (2016) Comparative Study of the Magnetic Structure of BaFe2As2 Doped with Co or Ni. Journal of Superconductivity and Novel Magnetism, 29, 3147-3154.
https://doi.org/10.1007/s10948-016-3626-8
[59]  Columbié-Leyva, R., Soullard, J. and Kaplan, I. (2019) Electronic Structure Study of New Family of High-Tc Fe-Superconductors Based on BaFe2As2 in Presence of Dopants Rh and Pd. MRS Advances, 4, 3365-3372.
https://doi.org/10.1557/adv.2019.409
[60]  Kaplan, I.G., Soullard, J., Hernández-Cobos, J. and Pandey, R. (1999) Electronic Structure of Ceramics at the MP2 Electron Correlation Level. Journal of Physics: Condensed Matter, 11, 1049-1058.
https://doi.org/10.1088/0953-8984/11/4/012
[61]  Kaplan, I.G., Hernández-Cobos, J. and Soullard, J. (2000) Quantum Systems in Chemistry and Physics. Kluwer Academic, Dordrecht, 143-158.
[62]  Kaplan, I.G., Soullard, J. and Hernández-Cobos, J. (2002) Effect of Zn and Ni Substitution on the Local Electronic Structure of the YBa2Cu3O7 Superconductor. Physical Review B, 65, Article ID: 214509.
https://doi.org/10.1103/PhysRevB.65.214509
[63]  Foster, J.P. and Weinhold, F. (1980) Natural Hybrid Orbitals. Journal of the American Chemical Society, 102, 7211-7218.
https://doi.org/10.1021/ja00544a007
[64]  Weinhold, F. and Landis, C.R. (2001) Natural Bond Orbitals and Extensions of Localized Bonding Concepts. Chemistry Education Research and Practice, 2, 91-104.
https://doi.org/10.1039/B1RP90011K
[65]  Glendening, E.D., Reed, A.E., Carpenter, J.E. and Weinhold, F. (2003) NBO Version 3.1.
[66]  Frisch, M.J., Trucks, G.W., et al. (2016) Gaussian 16 Revision A.03.
[67]  Kaplan, I.G. (2006) Intermolecular Interaction: Physical Picture, Computational Methods and Model Potentials. John Wiley & Sons, Chichester, 367.
https://doi.org/10.1002/047086334X
[68]  Wachters, A.J.H. (1970) Gaussian Basis Set for Molecular Wavefunctions Containing Third-Row Atoms. The Journal of Chemical Physics, 52, 1033-1036.
https://doi.org/10.1063/1.1673095
[69]  Hay, P.J. (1977) Gaussian Basis Sets for Molecular Calculations—Representation of 3D Orbitals in Transition-Metal Atoms. The Journal of Chemical Physics, 66, 4377-4384.
https://doi.org/10.1063/1.433731
[70]  Raghavachari, K. and Trucks, G.W. (1989) Highly Correlated Systems. Excitation Energies of First Row Transition Metals Sc-Cu. The Journal of Chemical Physics, 91, 1062-1065.
https://doi.org/10.1063/1.457230
[71]  Binning, R.C. and Curtiss, L.A. (1990) Compact Contracted Basis-Sets for 3rd-Row Atoms: Ga-Kr. Journal of Computational Chemistry, 11, 1206-1216.
https://doi.org/10.1002/jcc.540111013
[72]  McGrath, M.P. and Radom, L. (1991) Extension of Gaussian-1 (G1) Theory to Bromine-Containing Molecules. The Journal of Chemical Physics, 94, 511-516.
https://doi.org/10.1063/1.460367
[73]  Curtiss, L.A., McGrath, M.P., Blaudeau, J.-P., Davis, N.E., Binning, R.C. and Radom, L. (1995) Extension of Gaussian-2 Theory to Molecules Containing Third-Row Atoms Ga-Kr. The Journal of Chemical Physics, 103, 6104-6113.
https://doi.org/10.1063/1.470438
[74]  Dolg, M., Stoll, H., Savin, A. and Preuss, H. (1989) Energy-Adjusted Pseudopotentials for the Rare Earth Elements. Theoretical Chemistry Accounts, 75, 173-194.
https://doi.org/10.1007/BF00528565
[75]  Küchle, W., Dolg, M., Stoll, H. and Preuss, H. (1994) Energy-Adjusted Pseudopotentials for the Actinides. Parameter Sets and Test Calculations for Thorium and Thorium Monoxide. The Journal of Chemical Physics, 100, 7535.
https://doi.org/10.1063/1.466847
[76]  Kaupp, M., Schleyer, P.V.R., Stoll, H. and Preuss, H. (1991) Pseudopotential Approaches to Ca, Sr, and Ba Hydrides. Why Are Some Alkaline-Earth MX2 Compounds Bent? The Journal of Chemical Physics, 94, 1360-1366.
https://doi.org/10.1063/1.459993
[77]  Andrae, D., Haeussermann. U., Dolg, M., Stoll, H. and Preuss, H. (1990) Energy adjusted ab initio pseudopotentials for the 2nd and 3rd row transition-elements. Theoretical Chemistry Accounts, 77, 123-141.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413