全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Six-Element Yagi Array Designs Using Central Force Optimization with Pseudo Random Negative Gravity

DOI: 10.4236/wet.2021.123003, PP. 23-51

Keywords: Antenna, 6-Element Array, Yagi, Yagi-Uda, Array, Impedance Bandwidth, VSWR, Forward Gain, Antenna Design, Antenna Optimization, Central Force Optimization, CFO, Deterministic, Metaheuristic, Evolutionary Algorithm, Gravity, Gravitational Kinematics, Exploration, Exploitation

Full-Text   Cite this paper   Add to My Lib

Abstract:

A six-element Yagi-Uda array is optimally designed using Central Force Optimization (CFO) with a small amount of pseudo randomly injected negative gravity. CFO is a simple, deterministic metaheuristic analogizing gravitational kinematics (motion of masses under the influence of gravity). It has been very effective in addressing a wide range of antenna and other problems and normally employs only positive gravity. With positive gravity the six element CFO-designed Yagi array described here exhibits excellent performance with respect to the objectives of impedance bandwidth and forward gain. This paper addresses the question of what happens when a small amount of negative gravity is injected into the CFO algorithm. Does doing so have any effect, beneficial, negative or neutral? In this particular case negative gravity improves CFO’s exploration and creates a region of optimality containing many designs that perform about as well as or better than the array discovered with only positive gravity. Without some negative gravity these array configurations are overlooked. This Yagi-Uda array design example suggests that antennas optimized or designed using deterministic CFO may well benefit by including a small amount of negative gravity, and that the negative gravity approach merits further study.

References

[1]  Uda, S. (1926) On the Wireless Beam of Short Electric Waves. Journal of the Institute of Electrical Engineers (Japan), 46, 273-282.
[2]  Yagi, H. (1928) Beam Transmission of Ultra Short Waves. Proceedings of the IEEE, 85, 1864-1874. https://doi.org/10.1109/JPROC.1997.649674
[3]  Stutzman, W.L. and Thiele, G.A. (2013) Antenna Theory and Design. 3rd Edition, John Wiley & Sons, Inc., Hoboken, Sect. 6.3, 166.
[4]  Ramo, S., Whinnery, J.R. and Van Duzer, T. (1994) Fields and Waves in Communication Electronics. Third Edition, Wiley & Sons, Inc., Hoboken, Sect. 12.22, Yagi-Uda Arrays, 64.
[5]  Viezbicke, P. (1976) Yagi Antenna Design. U.S. Government Printing Office, Washington DC. https://doi.org/10.6028/NBS.TN.688
https://play.google.com/store/books/details?id=mqy0Ta4MglAC
[6]  Balanis, C.A. (2005) Antenna Theory Analysis and Design. 3rd Edition, Wiley-Inter- science, Hoboken, Sect. 9.4.2, 509.
[7]  Glover, F. and Sorensen, K. (2015) Metaheuristics. Scholarpedia, 10, Article No. 6532. https://doi.org/10.4249/scholarpedia.6532
[8]  Rattan, M., Patterh, M.S. and Sohi, B.S. (2008) Optimization of Gain, Impedance, and Bandwidth of Yagi-Uda Array Using Particle Swarm Optimization. International Journal of Antennas and Propagation, 2008, Article ID: 193242.
https://doi.org/10.1155/2008/193242
[9]  Goudos, S.K., Siakavara, K., Vafiadis, E.E. and Sahalos, J.N. (2010) Pareto Optimal Yagi-Uda Antenna Design Using Multi-Objective Differential Evolution. Progress in Electromagnetics Research, 105, 231-251. https://doi.org/10.2528/PIER10052302
[10]  Singh, S. and Mittal, E. (2013) Designing Yagi-Uda Antenna Using Gain-Impedance Multiobjective Optimization. Journal of Network and Innovative Computing, 1, 203-213.
[11]  Suna, Y., Zhanga, H., Wen, G. and Wanga, P. (2012) Research Progress in Yagi Antennas. Procedia Engineering, 29, 2116-2121.
https://doi.org/10.1016/j.proeng.2012.01.272
[12]  Lohn, J.D., Kraus, W.F. and Colombano, S.P. (2001) Evolutionary Optimization of Yagi-Uda Antennas. Proceedings of 4th International Conference on Evolvable Systems, Tokyo, 3-5 October 2001, 236-243. https://doi.org/10.1007/3-540-45443-8_21
[13]  Singh, S. and Sachdeva, G. (2012) Yagi-Uda Antenna Design Optimization for Maximum Gain Using Different BBO Migration Variants. International Journal of Computer Applications, 58, 14-18.
https://doi.org/10.5120/9278-3471
[14]  Formato, R.A. (2012) Improving Bandwidth of Yagi-Uda Arrays. Wireless Engineering and Technology, 3, 18-24. https://doi.org/10.4236/wet.2012.31003
[15]  Lisboa, A.C., Vieira, D.A.G., Vasconcelos, J.A., Saldanha, R.R. and Takahashi, R.H.C. (2009) Monotonically Improving Yagi-Uda Conflicting Specifications Using the Dominating Cone Line Search Method. IEEE Transactions on Magnetics, 45, 1494- 1497.
https://doi.org/10.1109/TMAG.2009.2012688
[16]  Chowdhury, A., Ghosh, A., Giri, R. and Das, S. (2010) Optimization of Antenna Configuration with a Fitness-Adaptive Differential Evolution Algorithm. Progress in Electromagnetics Research B, 26, 291-319.
https://doi.org/10.2528/PIERB10080703
[17]  Jones, E.A. and Joines, W.T. (1997) Design of Yagi-Uda Antennas Using Genetic Algorithms. IEEE Transactions on Antennas and Propagation, 45, 1386-1392.
https://doi.org/10.1109/8.623128
[18]  Yan., Y.-L., Guang, F., Gong, S.-X., Chen, X. and Zhang, Z.-Y. (2010) Wideband Yagi-Uda Antenna Design Using Adaptive Differential Evolution Algorithm. Journal of Electromagnetic Waves and Applications, 24, 2523-2536.
https://doi.org/10.1163/156939310793675709
[19]  Formato, R.A. (2007) Central Force Optimization: A New Metaheuristic with Applications in Applied Electromagnetics. Progress in Electromagnetics Research, 77, 425-491.
https://doi.org/10.2528/PIER07082403
[20]  Qubati, G.M., Dib, N.I. and Formato, R.A. (2010) Antenna Benchmark Performance and Array Synthesis Using Central Force Optimization. IET Microwaves, Antennas & Propagation, 4, 583-592.
https://doi.org/10.1049/iet-map.2009.0147
[21]  Qubati, G.M. and Dib, N.I. (2010) Microstrip Patch Antenna Optimization Using Modified Central Force Optimization. Progress in Electromagnetics Research B, 21, 281-298.
[22]  Asi, M.J. and Dib, N.I. (2010) Design of Multilayer Microwave Broadband Absorbers Using Central Force Optimization. Progress in Electromagnetics Research B, 26, 101-113.
https://doi.org/10.2528/PIERB10090103
[23]  Gonzalez, J.E., Amaya, I. and Correa, R. (2013) Design of an Optimal Multi-Layered Electromagnetic Absorber through the Central Force Optimization Algorithm. Proceedings of 2013 PhotonIcs and Electromagnetics Research Symposium, Stockholm, 12-15 August 2013, 1082-1086.
[24]  Montaser, A.M., Mahmoud, K.R., Abdel-Rahman, A.B. and Elmikati, H.A. (2012) Circular, Hexagonal and Octagonal Array Geometries for Smart Antenna Systems Using Hybrid CFO-HC Algorithm. Journal of Engineering Sciences, 40, 1715-1732.
https://doi.org/10.21608/jesaun.2012.114613
[25]  Formato, R.A. and Omran, M.G.H. (2017) Optimization of LPDA Excitations and the PBM Antenna Benchmarks Using SHADE and L-SHADE Algorithms. Progress in Electromagnetics Research B, 79, 103-125.
https://doi.org/10.2528/PIERB17100701
[26]  Mahmoud, K.R. (2011) Central Force Optimization: Nelder-Mead Hybrid Algorithm for Rectangular Microstrip Antenna Design. Electromagnetics, 31, 578-592.
https://doi.org/10.1080/02726343.2011.621110
[27]  Ahmed, E., Mahmoud, K.R., Hamad, S. and Fayed, Z.T. (2013) Real Time Parallel PSO and CFO for Adaptive Beam-Forming Applications. PIERS Proceedings 2013, Taipei, 25-28 March 2013, 816-820.
[28]  Korany, R.M. (2016) Synthesis of Unequally-Spaced Linear Array Using Modified Central Force Optimization. IET Microwaves, Antennas & Propagation, 10, 1011- 1021.
https://doi.org/10.1049/iet-map.2015.0801
[29]  Green II, R.C., Wang, L. and Alam, M. (2012) Training Neural Networks Using Central Force Optimization and Particle Swarm Optimization: Insights and Comparisons. Expert Systems with Applications, 39, 555-563.
https://doi.org/10.1016/j.eswa.2011.07.046
[30]  Chen, Y., Yu, J., Mei, Y., Wang, Y. and Su, X. (2016) Modified Central Force Optimization (MCFO) Algorithm for 3D UAV Path Planning. Neurocomputing, 171, 878-888.
https://doi.org/10.1016/j.neucom.2015.07.044
[31]  El-Hoseny, H.M., El-Rahman, W.A., El-Rabaie, E.-S.M., El-Samie, F.E.A. and Faragallah, O.S. (2018) An Efficient DT-CWT Medical Image Fusion System Based on Modified Central Force Optimization and Histogram Matching. Infrared Physics & Technology, 94, 223-231.
https://doi.org/10.1016/j.infrared.2018.09.003
[32]  Meng, C., Sun, Z.X. and Liu, S.M. (2014) Neural Network Ensembles Based on Copula Methods and Distributed Multiobjective Central Force Optimization Algorithm. Engineering Applications of Artificial Intelligence, 32, 203-212.
https://doi.org/10.1016/j.engappai.2014.02.009
[33]  Wenlong, H., Kup-Sze, C. and Wang, S. (2017) Synchronization Clustering Based on Central Force Optimization and Its Extension for Large-Scale Datasets. Knowledge-Based Systems, 118, 31-44. https://doi.org/10.1016/j.knosys.2016.11.007
[34]  El-Hoseny, H.M., El Kareh, Z.Z., Mohamed, W.A., El Banby, G.M., Mahmoud, K.R., Faragallah, O.S., et al. (2019) An Optimal Wavelet-Based Multi-Modality Medical Image Fusion Approach Based on Modified Central Force Optimization and Histogram Matching. Multimedia Tools and Applications, 78, 26373-26397.
https://doi.org/10.1007/s11042-019-7552-1
[35]  Moghadas, S.M.J. and Samani, H.M.V (2017) Application of Central Force Optimization Method to Design Transient Protection Devices for Water Transmission Pipelines. Modern Applied Science, 11. https://doi.org/10.5539/mas.v11n3p76
[36]  Qian, W., Wang, B. and Feng, Z. (2015) Adaptive Central Force Optimization Algorithm Based on the Stability Analysis. Mathematical Problems in Engineering, 2015, Article ID: 914789, 10 p. https://doi.org/10.1155/2015/914789
[37]  Liu, J. and Wang, Y.-P. (2014) An Improved Central Force Optimization Algorithm for Multimodal Optimization. Journal of Applied Mathematics, 2014, Article ID: 895629, 12 p.
https://doi.org/10.1155/2014/895629
[38]  Liu, Y. and Tian, P. (2015) A Multi-Start Central Force Optimization for Global Optimization. Applied Soft Computing, 27, 92-98.
https://doi.org/10.1016/j.asoc.2014.10.031
[39]  Formato, R.A. (2017) Determinism in Electromagnetic Design & Optimization— Part I: Central Force Optimization. Forum for Electromagnetic Research Methods and Application Technologies, 19, Article No. 9. https://www.e-fermat.org
[40]  Formato, R.A. (2017) Determinism in Electromagnetic Design & Optimization— Part II: BBP-Derived π Fractions for Generating Uniformly Distributed Sampling Points in Global Search and Optimization Algorithms. Forum for Electromagnetic Research Methods and Application Technologies, 19, Article No. 10.
https://www.e-fermat.org
[41]  Formato, R.A. (2010) Improved CFO Algorithm for Antenna Optimization. Progress in Electromagnetics Research B, 19, 405-425.
https://doi.org/10.2528/PIERB09112309
[42]  Formato, R.A. (2011) Central Force Optimization with Variable Initial Probes and Adaptive Decision Space. Applied Mathematics and Computation, 217, 8866-8872.
https://doi.org/10.1016/j.amc.2011.03.151
[43]  Formato, R.A. (2009) Central Force Optimisation: A New Gradient-Like Metaheuristic for Multidimensional Search and Optimisation. International Journal of Bio-Inspired Computation, 1, 217-238. https://doi.org/10.1504/IJBIC.2009.024721
[44]  Ding, D., Luo, X., Chen, J., Wang, X., Du, P. and Guo, Y. (2011) A Convergence Proof and Parameter Analysis of Central Force Optimization Algorithm. Journal of Convergence Information Technology, 6, 16-23.
[45]  Crepinsek, M., Liu, S-H. and Mernik, M. (2013) Exploration and Exploitation in Evolutionary Algorithms: A Survey. ACM Computing Surveys, 45, Article No. 35.
https://doi.org/10.1145/2480741.2480752
[46]  Luke, S. (2015) Essentials of Metaheuristics (Online Ver. 2.2). 2nd Edition. Lulu, Sicilia. https://cs.gmu.edu/~sean/book/metaheuristics/
[47]  Korosec, P. and Eftimov, T. (2020) Insights into Exploration and Exploitation Power of Optimization Algorithm Using DSC Tool. Mathematics, 8, Article No. 1474.
https://doi.org/10.3390/math8091474
[48]  Cuevas, E., Echavarria, A. and Ramirez-Ortegon, M. (2014) An Optimization Algorithm Inspired by the States of Matter That Improves the Balance between Exploration and Exploitation. Applied Intelligence, 40, 256-272.
https://doi.org/10.1007/s10489-013-0458-0
[49]  Burke, G.J. (2011) Numerical Electromagnetics Code—NEC-4.2 Method of Moments, Part I: User’s Manual. LLNL-SM-490875, Lawrence Livermore National Laboratory (USA), Livermore.
[50]  Dib, N., Sharaqa, A. and Formato, R.A. (2013) Variable Z0 Applied to the Optimal Design of Multi-Stub Matching Network and a Meander Monopole. International Journal of Microwave and Wireless Technologies, 6, 505-514.
https://doi.org/10.1017/S1759078713001049
[51]  Voors, A. (2005) 4nec2. Antenna Modeling Software.
https://www.qsl.net/4nec2/
[52]  Formato, R.A. (2013) Are Near Earth Objects the Key to Optimization Theory. British Journal of Mathematics & Computer Science, 3, 341-351.
https://doi.org/10.9734/BJMCS/2013/3400
[53]  Schweickart, R., Chapma, C., Durda, D., Hut, P., Bottke, B. and Nesvorny, D. (2006) Threat Characterization: Trajectory Dynamics.
http://arxiv.org/abs/physics/0608155
[54]  Valsecchi, G.B., Milani, A., Gronchi, G.F. and Chesley, S.R. (2003) Resonant Returns to Closeapproaches: Analytical Theory. Astronomy & Astrophysics, 408, 1179- 1196.
https://doi.org/10.1051/0004-6361:20031039
[55]  Marion, J.B. (1970) Classical Dynamics of Particles and Systems, 2nd Edition, Harcourt Brace Jovanovich, Inc., New York, §2.7.
[56]  Brand, L. (1966) Differential and Difference Equations. John Wiley & Sons, Inc., New York, Sect. 56.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413