全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Quantitative Ultrasound Elastography of Breast: A Review and Update with Emphasis on Shear Wave Imaging (ARFI)

DOI: 10.4236/ojmi.2021.112006, PP. 58-72

Keywords: Breast, Elastography, Shear Wave Elastography, Ultrasound

Full-Text   Cite this paper   Add to My Lib

Abstract:

Elastography is a method which determines the stiffness of tissues with the help of ultrasound technology and exhibits more quantitative data according to palpation that made during physical examination. Elastography has relatively entered to routine use in the breast evaluation with imaging techniques. Although palpation has a very long history, elastography has been used since 1990s. Elastography is used as an adjunct to conventional gray scale ultrasound and can identify the stiffness of the tissues non-invasively. Today, it is used as two separate technological modalities: strain elastography and shear wave elastography. The aims of these modalities are to increase the sensitivity of the separation between malignant and benign lesions, reduce the unnecessary biopsy processes and to provide a more accurate Breast Imaging Reporting and Data System (BIRADS) categorization of the breast lesions. In this article, we aimed to review the clinical utilization and benefits of elastography in differantial diagnosis of breast lesions, BIRADS categorization, and biopsy decision making in the light of current literature.

References

[1]  Goddi, A., Bonardi, M. and Alessi, S. (2012) Breast Elastography: A Literature Review. Journal of Ultrasound, 15, 192-198.
https://doi.org/10.1016/j.jus.2012.06.009
[2]  Stijven, S., Gielen, E., Bevernage, C., Horvath, M. and Meylaerts, L. (2013) Magnetic Resonance Imaging: Value of Diffusion-Weighted Imaging in Differentiating Benign from Malignant Breast Lesions. European Journal of Obstetrics & Gynecology & Reproductive Biology, 166, 215-220.
https://doi.org/10.1016/j.ejogrb.2012.10.029
[3]  Uematsu, T. (2014) Ultrasonographic Findings of Missed Breast Cancer: Pitfalls and Pearls. Breast Cancer, 21, 10-19.
https://doi.org/10.1007/s12282-013-0498-7
[4]  Tozaki, M. and Fukuma, E. (2011) Does Power Doppler Ultrasonography Improve the BI-RADS Category Assessment and Diagnostic Accuracy of Solid Breast Lesions? Acta Radiologica, 52, 706-710.
https://doi.org/10.1258%2Far.2011.110039
[5]  Heng, H.G. and Widmer, W.R. (2010) Appearance of Common Ultrasound Artifacts in Conventional vs. Spatial Compound Imaging. Veterinary Radiology & Ultrasound, 51, 621-627.
https://doi.org/10.1111/j.1740-8261.2010.01724.x
[6]  Yildirim, D., Gurses, B., Eksci, B. and Kaur, A. (2011) Power Doppler Vocal Fremitus Breast Sonography: Differential Diagnosis with a New Classification Scheme—Power Doppler Vocal Fremitus Examination of Breast Lesions. Journal of Cancer Therapy, 2, 243-252.
https://doi.org/10.4236/jct.2011.22031
[7]  Barr, R.G. (2019) Future of Breast Elastography. Ultrasonography, 38, 93-105.
https://doi.org/10.14366/usg.18053
[8]  Dighe, M., Luo, S., Cuevas, C. and Kim, Y. (2013) Efficacy of Thyroid Ultrasound Elastography in Differential Diagnosis of Small Thyroid Nodules. European Journal of Radiology, 82, 274-280.
https://doi.org/10.1016/j.ejrad.2013.01.009
[9]  Dietrich, C.F., Barr, R.G., Farrokh, A., Dighe, M., Hocke, M., Christian Jenssen, C., et al. (2017) Strain Elastography—How To Do It? Ultrasound International Open, 3, E137-E149.
https://doi.org/10.1055/s-0043-119412
[10]  Youk, J.H., Gweon, H.M. and Son, E.J. (2017) Shear-Wave Elastography in Breast Ultrasonography: The State of the Art. Ultrasonography, 36, 300-309.
https://doi.org/10.14366/usg.17024
[11]  Nightingale, K., Soo, M.S., Nightingale, R. and Trahey, G. (2002) Acoustic Radiation Force Impulse Imaging: In Vivo Demonstration of Clinical Feasibility. Ultrasound in Medicine & Biology, 28, 227-235.
https://doi.org/10.1016/S0301-5629(01)00499-9
[12]  Yang, H., Xu, Y., Zhao, Y., Yin, J., Chen, Z. and Huang, P. (2020) The Role of Tissue Elasticity in the Differential Diagnosis of Benign and Malignant Breast Lesions Using Shear Wave Elastography. BMC Cancer, 20, Article No. 930.
https://doi.org/10.1186/s12885-020-07423-x
[13]  Gong, X., Xu, Q., Xu, Z., Xiong, P., Yan, W. and Chen, Y. (2011) Real-Time Elastography for the Differentiation of Benign and Malignant Breast Lesions: A Meta-Analysis. Breast Cancer Research and Treatment, 130, Article No. 18.
https://doi.org/10.1007/s10549-011-1745-2
[14]  Frey, H. (2003) Realtime-Elastographie. A New Ultrasound Procedure for the Reconstruction of Tissue Elasticity. Der Radiologe, 43, 850-855.
https://doi.org/10.1007/s00117-003-0943-2
[15]  Xiao, Y., Yu, Y., Niu, L., Qian, M., Deng, Z., Qiu, W. and Zheng, H. (2016) Quantitative Evaluation of Peripheral Tissue Elasticity for Ultrasound-Detected Breast Lesions. Clinical Radiology, 71, 896-904.
https://doi.org/10.1016/j.crad.2016.06.104
[16]  Shiina, T., Nightingale, K.R., Palmeri, M.L., Hall, T.J., Bamber, J.C., Barr, R.G., et al. (2015) WFUMB Guidelines and Recommendations for Clinical Use of Ultrasound Elastography: Part 1: Basic Principles and Terminology. Ultrasound in Medicine & Biology, 41, 1126-1147.
https://doi.org/10.1016/j.ultrasmedbio.2015.03.009
[17]  Yildirim, D., Sahin, M., Tutar, O., Kayadibi, H., Kaur, A., Coskun, A.K. and Gumus, T. (2013) Ultrasound Elastography for the Differential Diagnosis of Nipple Retraction. Journal of Medical Ultrasonics, 40, 429-435.
https://doi.org/10.1007/s10396-013-0439-2
[18]  Barr, R.G., Nakashima, K., Amy, D., Cosgrove, D., Farrokh, A., Schafer, F., et al. (2015) WFUMB Guidelines and Recommendations for Clinical Use of Ultrasound Elastography: Part 2: Breast. Ultrasound in Medicine & Biology, 41, 1148-1160.
https://doi.org/10.1016/j.ultrasmedbio.2015.03.008
[19]  Zhou, J., Zhou, C., Zhan, W., Jia, X., Dong, Y. and Yang, Z. (2014) Elastography Ultrasound for Breast Lesions: Fat-to-Lesion Strain Ratio vs Gland-to-Lesion Strain Ratio. European Radiology, 24, 3171-3177.
https://doi.org/10.1007/s00330-014-3366-8
[20]  Song, G., Jing, L., Yan, M., Cong, S. and Wang, X. (2015) Influence of Various Breast Factors on the Quality of Strain Elastograms. Journal of Ultrasound in Medicine, 34, 395-400.
https://doi.org/10.7863/ultra.34.3.395
[21]  Sarvazyan, A.P., Rudenko, O.V., Swanson, S.D., Brian Fowlkes, J. and Emelianov, S.Y (1998) Shear Wave Elasticity Imaging: A New Ultrasonic Technology of Medical Diagnostics. Ultrasound in Medicine & Biology, 24, 1419-1435.
https://doi.org/10.1016/S0301-5629(98)00110-0
[22]  Jayaraman, J., Indiran, V., Kannan, K. and Maduraimuthu, P. (2017) Acoustic Radiation Force Impulse Imaging in Benign and Malignant Breast Lesions. Cureus, 9, e1301.
https://doi.org/10.7759/cureus.1301
[23]  Gennisson, J.L., Deffieux, T., Fink, M. and Tanter, M. (2013) Ultrasound Elastography: Principles and Techniques. Diagnostic and Interventional Imaging, 94, 487-495.
https://doi.org/10.1016/j.diii.2013.01.022
[24]  Golatta, M., Schweitzer-Martin, M., Harcos, A., Schott, S., Gomez, C., Stieber, A., et al. (2013) Normal Breast Tissue Stiffness Measured by a New Ultrasound Technique: Virtual Touch Tissue Imaging. European Journal of Radiology, 82, 676-679.
https://doi.org/10.1016/j.ejrad.2013.06.029
[25]  Kim, Y.S., Park, J.G., Kim, B.S., Lee, C.H. and Ryu, D.W. (2014) Diagnostic Value of Elastography Using Acoustic Radiation Force Impulse Imaging and Strain Ratio for Breast Tumors. Journal of Breast Cancer, 17, 76-82.
https://doi.org/10.4048/jbc.2014.17.1.76
[26]  Ianculescu, V., Ciolovan, L.M., Dunant, A., Vielh, P., Mazouni, C., Delaloge, S., et al. (2014) Added Value of Virtual Touch IQ Shear Wave Elastography in the Ultrasound Assessment of Breast Lesions. European Journal of Radiology, 83, 773-777.
https://doi.org/10.1016/j.ejrad.2014.01.021
[27]  Youk, J.H., Gweon, H.M., Son, E.J., Kim, J.A. and Jeong, J. (2013) Shear-Wave Elastography of Invasive Breast Cancer: Correlation between Quantitative Mean Elasticity Value and Immunohistochemical Profile. Breast Cancer Research and Treatment, 138, 119-126.
https://doi.org/10.1007/s10549-013-2407-3
[28]  Evans, A., Whelehan, P., Thomson, K., McLean, D., Brauer, K., Purdie, C., et al. (2012) Invasive Breast Cancer: Relationship between Shear-Wave Elastographic Findings and Histologic Prognostic Factors. Radiology, 263, 673-677.
https://doi.org/10.1148/radiol.12111317
[29]  Choi, W.J., Kim, H.H., Cha, J.H., Shin, H.J., Kim, H., Chae, E.Y., et al. (2014) Predicting Prognostic Factors of Breast Cancer Using Shear Wave Elastography. Ultrasound in Medicine & Biology, 40, 269-274.
https://doi.org/10.1016/j.ultrasmedbio.2013.09.028
[30]  Chang, J.M., Park, I.A., Lee, S.H., Kim, W.H., Bae, M.S., Koo, H.R., et al. (2013) Stiffness of Tumours Measured by Shear-Wave Elastography Correlated with Subtypes of Breast Cancer. European Radiology, 23, 2450-2458.
https://doi.org/10.1007/s00330-013-2866-2
[31]  Wojcinski, S., Brandhorst, K., Sadigh, G., Hillemanns, P. and Degenhardt, F. (2013) Acoustic Radiation Force Impulse Imaging with Virtual Touch™ Tissue Quantification: Mean Shear Wave Velocity of Malignant and Benign Breast Masses. International Journal of Women’s Health, 30, 619-627.
https://doi.org/10.2147/IJWH.S50953
[32]  Li, G., Li, D.W., Fang, Y.X., Song, Y.J., Deng, Z.J., Gao, J., et al. (2013) Performance of Shear Wave Elastography for Differentiation of Benign and Malignant Solid Breast Masses. PLoS ONE, 18, e76322.
https://doi.org/10.1371/journal.pone.0076322
[33]  Zhang, H., Shi, Q., Gu, J., Jiang, L., Bai, M., Liu, L., et al. (2014) Combined Value of Virtual Touch Tissue Quantification and Conventional Sonographic Features for Differentiating Benign and Malignant Thyroid Nodules Smaller than 10mm. Journal of Ultrasound in Medicine, 33, 257-264.
https://doi.org/10.7863/ultra.33.2.257
[34]  Gu, J., Du, L., Bai, M., Chen, H., Jia, X., Zhao, J. and Zhang, X. (2012) Preliminary Study on the Diagnostic Value of Acoustic Radiation force Impulse Technology for Differentiating between Benign and Malignant Thyroid Nodules. Journal of Ultrasound in Medicine, 31, 763-771.
https://doi.org/10.7863/jum.2012.31.5.763
[35]  Bai, M., Du, L., Gu, J., Li, F. and Jia, X. (2012) Virtual Touch Tissue Quantification Using Acoustic Radiation Force Impulse Technology: Initial Clinical Experience with Solid Breast Masses. Journal of Ultrasound in Medicine, 31, 289-294.
https://doi.org/10.7863/jum.2012.31.2.289
[36]  Tozaki, M., Isobe, S. and Sakamoto, M. (2012) Combination of Elastography and Tissue Quantification Using the Acoustic Radiation Force Impulse (ARFI) Technology for Differential Diagnosis of Breast Masses. Japanese Journal of Radiology, 30, 659-670.
https://doi.org/10.1007/s11604-012-0106-3
[37]  Nightingale, K., McAleavey, S. and Trahey, G. (2003) Shear-Wave Generation Using Acoustic Radiation force: In Vivo and ex Vivo Results. Ultrasound in Medicine & Biology, 29, 1715-1723.
https://doi.org/10.1016/j.ultrasmedbio.2003.08.008
[38]  Wojcinski, S., Brandhorst, K., Sadigh, G., Hillemanns, P. and Degenhardt, F. (2013) Acoustic Radiation Force Impuşse Imaging with Virtual Touch Tissue Quantification: Measurements of Normal Breast Tissue and Dependence on the Degree of Pre-Compression. Ultrasound in Medicine & Biology, 39, 2226-2232.
https://doi.org/10.1016/j.ultrasmedbio.2013.06.014
[39]  Meng, W., Xing, P., Chen, Q. and Wu, C. (2013) Initial Experience of Acoustic Radiation Force Impulse Ultrasound Imaging of Cervical Lymph Nodes. European Journal of Radiology, 82, 1788-1792.
https://doi.org/10.1016/j.ejrad.2013.05.039
[40]  Fujiwara, T., Tomokuni, J., Iwanaga, K., Ooba, S. and Haji, T. (2013) Acoustic Radiation Force Impulse Imaging for Reactive and Malignant/Metastatic Cervical Lymph Nodes. Ultrasound in Medicine & Biology, 39, 1178-1183.
https://doi.org/10.1016/j.ultrasmedbio.2013.02.001
[41]  Li, J., Chen, M., Cao, C.L., Zhou, L.Q., Li, S.G., Ge, Z.K., et al. (2020) Diagnostic Performance of Acoustic Radiation Force Impulse Elastography for the Differentiation of Benign and Malignant Superficial Lymph Nodes: A Meta-Analysis. Journal of Ultrasound in Medicine, 39, 213-222.
https://doi.org/10.1002/jum.15096
[42]  Athanasiou, A., Latorre-Ossa, H., Criton, A., Tardivon, A., Gennisson, J.L. and Tanter, M. (2017) Feasibility of Imaging and Treatment Monitoring of Breast Lesions with Three-Dimensional Shear Wave Elastography. Ultraschall in der Medizin, 38, 51-59.
https://doi.org/10.1055/s-0034-1398980
[43]  Bidlek, M., Kovacs, E., Feher, K. and Godeny, M. (2015) New Opportunities in Imaging of Breast Cancer. Magyar Onkológia, 59, 44-55.
[44]  Pu, H., Zhang, X.L., Xiang, L.H., Zhang, J.L., Xu, G., Liu, H., et al. (2019) The efficacy of Added Shear Wave Elastography (SWE) in Breast Screening for Women with Inconsistent Mammography and Conventional Ultrasounds (US). Clinical Hemorheology and Microcirculation, 71, 83-94.
https://doi.org/10.3233/CH-180398
[45]  Park, S.Y., Choi, J.S., Han, B.K., Ko, E.Y. and Ko, E.S. (2017) Shear Wave Elastography in the Diagnosis of Breast Non-Mass Lesions: factors Associated with False negative and False Positive Results. European Radiology, 27, 3788-3798.
https://doi.org/10.1007/s00330-017-4763-6

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413