全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Crystal Packing Studies, Thermal Properties and Hirshfeld Surface Analysis in the Zn(II) Complex of 3-Aminopyridine with Thiocyanate as Co-Ligand

DOI: 10.4236/ojic.2021.113005, PP. 63-84

Keywords: Aminopyridine, DFT Studies, Hirshfeld Surface, Thiocyanate, Zinc

Full-Text   Cite this paper   Add to My Lib

Abstract:

Reaction of zinc acetate, potassium thiocyanate and the ligand 3-ampy gave the discrete tetrahedral complex [Zn(NCS)2(3-ampy)2] in which 3-ampy chelates in a monodentate fashion through its pyridine-N atom. It was characterized by single crystal X-ray diffraction, infrared, and elemental analysis. Density Functional Theory calculations were performed in order to gain insights into the role of weak molecular interactions in the complex that influence the self-assembly process and crystal packing. X---H (X = H, C, N and S) inter-actions. S-H interactions (30.2%) were found to be the main interactions that hold the molecules in the crystal structure. Furthermore, the thermolysis of the complex was studied in order to evaluate whether it was suitable as a precursor for zinc sulphide.

References

[1]  Goher, M.A.S., Hafez, A.K., Abu-Youssef, M.A.M., Badr, A.M.A., Gspan, C. and Mautner, F.A. (2004) New Metal(II) Complexes Containing Monodentate and Bridging 3-Aminopyridine and Azido Ligands. Polyhedron, 23, 2349-2356.
https://doi.org/10.1016/j.poly.2004.06.011
[2]  Shurdha, E., Lapidus, S.H., Stephens, P.W., Moore, C.E., Rheingold, A.L. and Miller, J.S. (2012) Extended Network Thiocyanate- and Tetracyanoethanide-Based First-Row Transition Metal Complexes. Inorganic Chemistry, 51, 9655-9665.
https://doi.org/10.1021/ic300804y
[3]  Werner, J., Runčevski, T., Dinnebier, R., Ebbinghaus, S.G., Suckert, S. and Näther, C. (2015) Thiocyanato Coordination Polymers with Isomeric Coordination Networks—Synthesis, Structures, and Magnetic Properties. European Journal of Inorganic Chemistry, 2015, 3236-3245.
https://doi.org/10.1002/ejic.201500473
[4]  Suckert, S., Germann, L.S., Dinnebier, R.E., Werner, J. and Näther, C. (2016) Synthesis, Structures and Properties of Cobalt Thiocyanate Coordination Compounds with 4-(hydroxymethyl)pyridine as Co-Ligand. Crystals, 6, 38.
https://doi.org/10.3390/cryst6040038
[5]  Majumdar, D., Babu, M.S.S., Das, S., Mohapatra, C., Biswas, J.K. and Mondal, M. (2017) Syntheses, X-Ray Crystal Structures, Photoluminescence Properties, Antimicrobial Activities and Hirshfeld Surface of Two New Cd(II) Azide/Thiocyanate Linked Coordination Polymers. ChemistrySelect, 2, 4811-4822.
https://doi.org/10.1002/slct.201700743
[6]  Pandey, P., Kharediya, B., Elrez, B., Sutter, J.P., Bhargavi, G., Rajasekharan, M.V. and Sunkari, S.S. (2017) Ligand Directed Structural Diversity and Magnetism in Copper(II)-Azido Assemblies with Isomeric Aminopyridines: Synthesis, Structure, Magnetism and Theoretical Studies. Dalton Transactions, 46, 15908-15918.
https://doi.org/10.1039/C7DT03115G
[7]  Prananto, Y., Urbatsch, A., Moubaraki, B., Murray, K., Turner, D., Deacon, G. and Batten, S. (2017) Transition Metal Thiocyanate Complexes of Picolylcyanoacetamides. Australian Journal of Chemistry, 70, 516-528.
https://doi.org/10.1071/CH16648
[8]  Mashaly, M.M., Abd-Elwahabb, Z.H. and Faheim, A.A. (2004) Preparation, Spectral Characterization and Antimicrobial Activities of Schiff Base Complexes Derived from 4-Aminoantipyrine. Mixed Ligand Complexes with 2-Aminopyridine, 8-Hydroxyquinoline and Oxalic Acid and their Pyrolytical Products. Journal of the Chinese Chemical Society, 51, 901-915.
https://doi.org/10.1002/jccs.200400135
[9]  Lah, N. and Leban, I. (2005) Catena-Poly[[[bis(3-aminopyridine-[kappa]N)cop- per(II)]-di-[mu]-chloro]hydrate]. Acta Crystallographica Section E, 61, m1708- m1710.
https://doi.org/10.1107/S1600536805024578
[10]  Wu, J.-Y., Feng, D.-M., He, H.-Y., Wang, Q.-X. and Zhu, L.-G. (2005) Poly[[[trans- bis(3-aminopyridine)copper(II)]-[mu]3-5-hydroxy-1,3-benzenedicarboxylato]monohydrate]. Acta Crystallographica Section E, 61, m1779-m1781.
https://doi.org/10.1107/S1600536805025535
[11]  Pan, W.L., Niu, X.L., Tang, W. and Hu, C.W. (2007) Bis(3-aminopyridine- κN)diisothiocyanatozinc(II). Acta Crystallographica Section E, 63, m304-m305.
https://doi.org/10.1107/S1600536806054791
[12]  Yilmaz, V.T., Hamamci, S. and Kazak, C. (2007) (3-Aminopyridine- [kappa]N1)(saccharinato-[kappa]N)silver(I). Acta Crystallographica Section E, 63, m3000.
https://doi.org/10.1107/S1600536807057248
[13]  Yeh, C.-W., Jou, C.-H., Tsou, C.-H. and Suen, M.-C. (2012) Poly[[[mu]-(3-amino- pyridine)-[kappa]2N:N’-[mu]-chlorido-chlorido(N,N’-dimethylformamide-[kap- pa]O)nickel(II)]N,N’-dimethylformamide monosolvate]. Acta Crystallographica Section E, 68, m1204-m1205.
https://doi.org/10.1107/S1600536812036215
[14]  Kartal, Z. (2016) Synthesis, Spectroscopic, Thermal and Structural Properties of [M(3-aminopyridine)2Ni(μ-CN)2(CN)2]n (M(II) = Co and Cu) Heteropoly Nuclear Cyano-Bridged Complexes. Spectrochimica Acta Part A, 152, 577-583.
https://doi.org/10.1016/j.saa.2014.12.117
[15]  Soliman, S.M. and Elsilk, S.E. (2017) Synthesis, Structural Analyses and Antimicrobial Activity of the Water Soluble 1D Coordination Polymer [Ag(3-aminopyridine)]ClO4. Journal of Molecular Structure, 1149, 58-68.
https://doi.org/10.1016/j.molstruc.2017.07.072
[16]  Dutta, D., Nashre-ul-Islam, S.M., Saha, U., Chetry, S., Guha, A.K. and Bhattacharyya, M.K. (2018) Structural Topology of Weak Non-Covalent Interactions in a Layered Supramolecular Coordination Solid of Zinc Involving 3-Aminopyridine and Benzoate: Experimental and Theoretical Studies. Journal of Chemical Crystallography, 48, 156-163.
https://doi.org/10.1007/s10870-018-0723-5
[17]  Mautner, F.A., Jantscher, P.V., Fischer, R.C., Torvisco, A., Reichmann, K. and Massoud, S.S. (2020) Syntheses, Structural Characterization, and Thermal Behaviour of Metal Complexes with 3-Aminopyridine as Co-Ligands. Transition Metal Chemistry, 46, 191-200.
https://doi.org/10.1007/s11243-020-00436-2
[18]  Yurdakul, Ö., Köse, D.A., Şahin, O. and Özer, D. (2021) Mn(II) and Co(II) Mixed-Ligand Coordination Compounds with Acesulfame and 3-Aminopyridine: Synthesis and Structural Properties. Journal of Coordination Chemistry, 1-13.
https://doi.org/10.1080/00958972.2021.1888083
[19]  Dojer, B., Pevec, A., Jagodič, M., Kristl, M. and Drofenik, M. (2012) Three New Cobalt(II) Carboxylates with 2-, 3- and 4-Aminopyridine: Syntheses, Structures and Magnetic Properties. Inorganica Chimica Acta, 383, 98-104.
https://doi.org/10.1016/j.ica.2011.10.056
[20]  Krebs, C., Ceglarska, M. and Näther, C. (2021) Synthesis, Crystal Structures and Properties of Polymorphic and Isomeric Nickel(II)thiocyanate Coordination Compounds with 3-Bromopyridine as Coligand. Zeitschrift für anorganische und allgemeine Chemie, 647, 552-559.
https://doi.org/10.1002/zaac.202000483
[21]  Sanchez Montilva, O.C., Movilla, F., Rodriguez, M.G. and Di Salvo, F. (2017) Synthesis, Crystal Structure and Study of the Crystal Packing in the Complex Bis(4-aminopyridine-[kappa]N1)dichloridocobalt(II). Acta Crystallographica Section C, 73, 399-406.
https://doi.org/10.1107/S2053229617004880
[22]  Yuoh, A.C.B., Agwara, M.O., Yufanyi, D.M., Conde, M.A., Jagan, R. and Eyong, K.O. (2015) Synthesis, Crystal Structure, and Antimicrobial Properties of a Novel 1-D Cobalt Coordination Polymer with Dicyanamide and 2-Aminopyridine. International Journal of Inorganic Chemistry, 2015, Article ID: 106838.
https://doi.org/10.1155/2015/106838
[23]  Chimaine, F.T., Yufanyi, D.M., Yuoh, A.C.B., Eni, D.B. and Agwara, M.O. (2016) Synthesis, Crystal Structure, Photoluminescent and Antimicrobial Properties of a Thiocyanato-Bridged Copper(II) Coordination Polymer. Cogent Chemistry, 2, Article ID: 1253905.
https://doi.org/10.1080/23312009.2016.1253905
[24]  Das, A., Choudhury, S., Manna, P., Baxter, D., Helliwell, M. and Mukhopadhyay, S. (2011) Associative Combination of Lone Pair-π, π-π and Anion-π Interactions Observed in a Ternary System Comprising Mg(II)-malonate-2-aminopyridine-hexaf- luoridophosphate. Polyhedron, 30, 2121-2126.
https://doi.org/10.1016/j.poly.2011.05.031
[25]  Sheldrick, G.M. (2015) SHELXT-20xy. Acta Crystallographica Section A, 71, 3-8.
https://doi.org/10.1107/S2053273314026370
[26]  Linden, A. (2015) Chemistry and Structure in Acta Crystallographica Section C. Acta Crystallographica Section C, 71, 1-2.
https://doi.org/10.1107/S2053229614026540
[27]  Sheldrick, G.M. (2015) Serial Crystallography with X-Ray Free-Electron Laser Pulses. Acta Crystallographica Section A, 71, s1.
https://doi.org/10.1107/S2053273315099982
[28]  Macrae, C.F., Edgington, P.R., McCabe, P., Pidcock, E., Shields, G.P., Taylor, R., Towler, M. and van de Streek, J. (2006) Mercury: Visualization and Analysis of Crystal Structures. Journal of Applied Crystallography, 39, 453-457.
https://doi.org/10.1107/S002188980600731X
[29]  Engel, E. and Dreizler, R.M. (2011) Density Functional Theory: An Advanced Course. Springer, Berlin.
https://doi.org/10.1007/978-3-642-14090-7
[30]  Becke, A.D. (1988) Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Physical Review A, 38, 3098-3100.
https://doi.org/10.1103/PhysRevA.38.3098
[31]  Becke, A.D. (1993) A New Mixing of Hartree-Fock and Local Density-Functional Theories. The Journal of Chemical Physics, 98, 1372-1377.
https://doi.org/10.1063/1.464304
[32]  Lee, C., Yang, W. and Parr, R.G. (1988) Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Physical Review B, 37, 785-789.
https://doi.org/10.1103/PhysRevB.37.785
[33]  Chai, J.-D. and Head-Gordon, M. (2008) Systematic Optimization of Long-Range Corrected Hybrid Density Functionals. The Journal of Chemical Physics, 128, Article ID: 084106.
https://doi.org/10.1063/1.2834918
[34]  Chai, J.-D. and Head-Gordon, M. (2008) Long-Range Corrected Hybrid Density Functionals with Damped Atom-Atom Dispersion Corrections. Physical Chemistry Chemical Physics, 10, 6615-6620.
https://doi.org/10.1039/b810189b
[35]  Ditchfield, R., Hehre, W.J. and Pople, J.A. (1971) Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules. The Journal of Chemical Physics, 54, 724-728.
https://doi.org/10.1063/1.1674902
[36]  Cramer, C.J. (2004) Essentials of Computational Chemistry: Theories and Models. Wiley, Hoboken.
[37]  Frisch, M., Trucks, G., Schlegel, H., Scuseria, G., Robb, M., Cheeseman, J., Scalmani, G., Barone, V., Mennucci, B., Petersson, G., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H., Izmaylov, A., Bloino, J., Zheng, G., Sonnenberg, J., Hada, M. and Fox, D. (2009) Gaussian 09 (Revision A02). Gaussian Inc., Wallingford.
[38]  Contreras-Garcia, J., Yang, W. and Johnson, E.R. (2011) Analysis of Hydrogen-Bond Interaction Potentials from the Electron Density: Integration of Noncovalent Interaction Regions. The Journal of Physical Chemistry A, 115, 12983-12990.
https://doi.org/10.1021/jp204278k
[39]  Tan, S.L., Jotani, M.M. and Tiekink, E.R.T. (2019) Utilizing Hirshfeld Surface Calculations, Non-Covalent Interaction (NCI) Plots and the Calculation of Interaction Energies in the Analysis of Molecular Packing. Acta Crystallographica Section E, 75, 308-318.
https://doi.org/10.1107/S2056989019001129
[40]  Lu, T. and Chen, F. (2012) Multiwfn: A Multifunctional Wavefunction Analyzer. Journal of Computational Chemistry, 33, 580-592.
https://doi.org/10.1002/jcc.22885
[41]  Kashinski, D.O., Chase, G.M., Nelson, R.G., Di Nallo, O.E., Scales, A.N., VanderLey, D.L. and Byrd, E.F.C. (2017) Harmonic Vibrational Frequencies: Approximate Global Scaling Factors for TPSS, M06, and M11 Functional Families Using Several Common Basis Sets. The Journal of Physical Chemistry A, 121, 2265-2273.
https://doi.org/10.1021/acs.jpca.6b12147
[42]  Spackman, M.A. and McKinnon, J.J. (2002) Fingerprinting Intermolecular Interactions in Molecular Crystals. CrystEngComm, 4, 378-392.
https://doi.org/10.1039/B203191B
[43]  McKinnon, J.J., Mark, A.S. and Mitchell, A.S. (2004) Novel Tools for Visualizing and Exploring Intermolecular Interactions in Molecular Crystals. Acta Crystallographica Section B, 60, 627-668.
https://doi.org/10.1107/S0108768104020300
[44]  Mardirossian, N. and Head-Gordon, M. (2014) A 10-Parameter, Range-Separated Hybrid, Generalized Gradient Approximation Density Functional with Nonlocal Correlation, Designed by a Survival-of-the-Fittest Strategy. Physical Chemistry Chemical Physics, 16, 9904-9924.
https://doi.org/10.1039/c3cp54374a
[45]  Mackenzie, C.F., Spackman, P.R., Jayatilaka, D. and Spackman, M.A. (2017) Crystal Explorer Model Energies and Energy Frameworks: Extension to Metal Coordination Compounds, Organic Salts, Solvates and Open-Shell Systems. IUCrJ, 4, 575-587.
https://doi.org/10.1107/S205225251700848X
[46]  Akalin, E. and Akyuz, S. (2011) Experimental and Theoretical Vibrational Spectroscopic Investigation of Zn(II) Halide Complexes of 3-Aminopyridine and 3-Chloropyridine. Journal of Molecular Structure, 993, 390-396.
https://doi.org/10.1016/j.molstruc.2011.01.060
[47]  Weinhold, F., Landis, C.R. and Glendening, E.D. (2016) What Is NBO Analysis and How Is It Useful? International Reviews in Physical Chemistry, 35, 399-440.
https://doi.org/10.1080/0144235X.2016.1192262
[48]  Weinhold, F. (2012) Natural Bond Orbital Analysis: A Critical Overview of Relationships to Alternative Bonding Perspectives. Journal of Computational Chemistry, 33, 2363-2379.
https://doi.org/10.1002/jcc.23060
[49]  Rathi, P.C., Ludlow, R.F. and Verdonk, M.L. (2020) Practical High-Quality Electrostatic Potential Surfaces for Drug Discovery Using a Graph-Convolutional Deep Neural Network. Journal of Medicinal Chemistry, 63, 8778-8790.
https://doi.org/10.1021/acs.jmedchem.9b01129

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133