全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

On the Number of Idempotent Partial Contraction Mappings of a Finite Chain

DOI: 10.4236/ojdm.2021.113007, PP. 94-101

Keywords: Height, Right (Left) Waist and Fix of a Transformation, Idempotents

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let \"\"be the partial symmetric semigroup on \"\"and let \"\"and \"\"be its subsemigroups of order-preserving contractions and order-preserving, order-decreasing contractions mappings of \"\", respectively. In this paper we investigate the cardinalities of \"\"and \"\", the set idempotents of \"\"and \"\", respectively. We also investigate the cardinalities of certain equivalences on \"\"and \"\".

References

[1]  Zhao, P. and Yang, M. (2012) Regularity and Green’s Relations on Semigroups of Transformations Preserving Order and Compression. Bulletin of the Korean Mathematical Society, 49, 1015-1025.
https://doi.org/10.4134/BKMS.2012.49.5.1015
[2]  Ali, B., Umar, A. and Zubairu, M.M. (2018) Regularity and Green’s Relations on the Semigroup of Partial Contractions of a Finite Chain.
[3]  Adeshola, A.D. and Umar, A. (2018) Combinatorial Results for Certain Semigroups of Order-Preserving Full Contraction Mappings of a Finite Chain. JCMCC, 106, 37-49.
[4]  Ali, B., Umar, A. and Zubairu, M.M. (2018) Regularity and Green’s Relations on the Semigroup of Partial and Full Contractions of a Finite Chain.
[5]  Umar, A. and Zubairu, M.M. (2018) On Certain Semigroups of Partial Contractions of a Finite Chain.
[6]  Borwein, D., Rankin, S. and Renner, L. (1989) Enumeration of Injective Partial Transformations. Discrete Mathematics, 73, 291-296.
https://doi.org/10.1016/0012-365X(89)90272-0
[7]  Clifford, A.H. and Preston, G.B. (1961) The Algebraic Theory of Semigroups, Vol. 1. American Mathematical Society, Providence.
[8]  Ganyushkin, O. and Mazorchuk, V. (2009) Classical Finite Transformation Semigroups: An Introduction. Springer, London.
https://doi.org/10.1007/978-1-84800-281-4
[9]  Howie, J.M. (1995) Fundamentals of Semigroup Theory. Clarendon Press, Oxford.
[10]  Howie, J.M. (1971) Products of Idempotents in Certain Semigroups of Transformations. Proceedings of the Edinburgh Mathematical Society, 17, 223-236.
https://doi.org/10.1017/S0013091500026936
[11]  Laradji, A. and Umar, A. (2004) Combinatorial Results for Semigroups of Order-Preserving Partial Transformations. Journal of Algebra, 278, 342-359.
[12]  Laradji, A. and Umar, A. (2004) Combinatorial Results for Semigroups of Order-Decreasing Partial Transformations. Journal of Integer Sequences, 7, Article 04.3.8.
[13]  Laradji, A. and Umar, A. (2006) Combinatorial Results for Semigroups of Order-Preserving Full Transformations. Semigroup Forum, 72, 51-62.
https://doi.org/10.1007/s00233-005-0553-6
[14]  Tainiter, T. (1968) A Characterization of Idempotents in Semigroups. The Journal of Combinatorial Theory, 5, 370-373.
https://doi.org/10.1016/S0021-9800(68)80012-2
[15]  Umar, A. (1992) On the Semigroups of Order-Decreasing Finite Full Transformations. Proceedings of the Royal Society of Edinburgh Section A, 120, 129-142.
https://doi.org/10.1017/S0308210500015031
[16]  Umar, A. (1998) Enumeration of Certain Finite Semigroups of Transformations. Discrete Mathematics, 89, 291-297.
[17]  Umar, A. (2014) Some Combinatorial Problems in the Theory of Partial Transformation Semigroups. Algebra Discrete Mathematics, 17, 110-134.
[18]  Garba, G.U. (1990) Idempotents in Partial Transformation Semigroups. Proceedings of the Royal Society of Edinburgh Section A, 116, 359-366.
[19]  Sloane, N.J.A. (2011) The On-Line Encyclopedia of Integer Sequences.
https://oeis.org
[20]  Laradji, A. (2019) On Order-Preserving Partial Transformations with Prescribed Number of Fixed Points. Technical Report No. 298, (June) Department of Mathematical Sciences, KFUPM, Dhahran.
[21]  Garba, G.U. (1994) Nilpotents in Semigroups of Partial Order-Preserving Transformations. Proceedings of the Edinburgh Mathematical Society, 37, 361-377.
https://doi.org/10.1017/S001309150001885X

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133