全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Ruthenium Catalyst Supported on Multi-Walled Carbon Nanotubes for CO Oxidation

DOI: 10.4236/mrc.2021.103005, PP. 73-91

Keywords: Multi-Walled Carbon Nanotubes, Ruthenium, CO Oxidation

Full-Text   Cite this paper   Add to My Lib

Abstract:

This work proposes the synthesis of the 5%wt Ru on MWCNT catalyst and the influence of feed rate and testing variables for low-temperature oxidation affecting the CO2 yield. Morphology and incorporation of the nanoparticles in carbon nanotubes were investigated by specific surface area (BET method); thermogravimetric analyses (TGA); X-ray diffraction; Raman spectroscopy, transmission electron microscopy (TEM) and XPS. The conversions of CO and O2 were mostly 100% in groups C1 and C2 (temperature between 200 and 500°C with low WHSV). In order to assess the effect of mass on catalytic activity, condition C3 was tested at even lower temperatures. In the tested catalyst, high activity (100% CO and O2 conversion) was observed, keeping it active under reaction conditions, suggesting oxi-reduction of the RuO2 at surface without affecting the MWCNT but Lewis acid influencing the CO2 yield.

References

[1]  Weaver, L.K. (1999) Carbon Monoxide Poisoning. Critical Care Clinics, 15, 297-317.
https://doi.org/10.1016/S0749-0704(05)70056-7
[2]  Liu, L. and Corma, A. (2018) Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles. Chemical Reviews, 118, 4981-5079.
https://doi.org/10.1021/acs.chemrev.7b00776
[3]  Cole, K.J., Carley, A.F., Crudace, M.J., Clarke, M., Taylor, S.H. and Hutchings, G.J. (2010) Copper Manganese Oxide Catalysts Modified by Gold Deposition: The Influence on Activity for Ambient Temperature Carbon Monoxide Oxidation. Catalysis Letters, 138, 143-147.
https://doi.org/10.1007/s10562-010-0392-2
[4]  Harrison, P.G., Ball, I.K., Azelee, W., Daniell, W. and Goldfarb, D. (2000) Nature and Surface Redox Properties of Copper(II)-Promoted Cerium(IV) Oxide CO-Oxidation Catalysts. Chemistry of Materials, 12, 3715-3725.
https://doi.org/10.1021/cm001113k
[5]  Rynkowski, J.M. and Dobrosz-Gómez, I. (2009) Ceria-Zirconia Supported Gold Catalysts. In: Annales Universitatis Mariae Curie-Sklodowska, De Gruyter Poland, Vol. 64, 197-217.
[6]  Yoshida, T., Murayama, T., Sakaguchi, N., Okumura, M., Ishida, T. and Haruta, M. (2018) Carbon Monoxide Oxidation by Polyoxometalate-Supported Gold Nanoparticulate Catalysts: Activity, Stability, and Temperature-Dependent Activation Properties. Angewandte Chemie International Edition, 57, 1523-1527.
https://doi.org/10.1002/anie.201710424
[7]  Kaneti, Y.V., Tanaka, S., Jikihara, Y., Nakayama, T., Bando, Y., Haruta, M., Hossain, M.S.A., Golberg, D. and Yamauchi, Y. (2018) Room Temperature Carbon Monoxide Oxidation Based on Two-Dimensional Gold-Loaded Mesoporous Iron Oxide Nanoflakes. Chemical Communications, 54, 8514-8517.
https://doi.org/10.1039/C8CC03639J
[8]  Brown, M., Green, A., Cohn, G. and Andersen, H. (1960) Purifying Hydrogen by Selective Oxidation of Carbon Monoxide. Industrial & Engineering Chemistry, 52, 841-844.
https://doi.org/10.1021/ie50610a025
[9]  Oh, S.H. and Sinkevitch, R.M. (1993) Carbon Monoxide Removal from Hydrogen-Rich Fuel Cell Feedstreams by Selective Catalytic Oxidation. Journal of Catalysis, 142, 254-262.
https://doi.org/10.1006/jcat.1993.1205
[10]  Kahlich, M.J., Gasteiger, H.A. and Behm, R.J. (1997) Kinetics of the Selective CO Oxidation in H2-Rich Gas on Pt/Al2O3. Journal of Catalysis, 171, 93-105.
https://doi.org/10.1006/jcat.1997.1781
[11]  Korotkikh, O. and Farrauto, R. (2000) Selective Catalytic Oxidation of CO in H2: Fuel Cell Applications. Catalysis Today, 62, 249-254.
https://doi.org/10.1016/S0920-5861(00)00426-0
[12]  Manasilp, A. and Gulari, E. (2002) Selective CO Oxidation over Pt/alumina Catalysts for Fuel Cell Applications. Applied Catalysis B: Environmental, 37, 17-25.
https://doi.org/10.1016/S0926-3373(01)00319-8
[13]  Igarashi, H., Uchida, H., Suzuki, M., Sasaki, Y. and Watanabe, M. (1997) Removal of Carbon Monoxide from Hydrogen-Rich Fuels by Selective Oxidation over Platinum Catalyst Supported on Zeolite. Applied Catalysis A: General, 159, 159-169.
https://doi.org/10.1016/S0926-860X(97)00075-6
[14]  Watanabe, M., Uchida, H., Igarashi, H. and Suzuki, M. (1995) Pt Catalyst Supported on Zeolite for Selective Oxidation of CO in Reformed Gases. Chemistry Letters, 24, 21-22.
https://doi.org/10.1246/cl.1995.21
[15]  Igarashi, H., Uchida, H. and Watanabe, M. (2000) Mordenite-Supported Noble Metal Catalysts for Selective Oxidation of Carbon Monoxide in a Reformed Gas. Chemistry Letters, 29, 1262-1263.
https://doi.org/10.1246/cl.2000.1262
[16]  Chagas, C.A., De Souza, E.F., De Carvalho, M.C.N.A., Martins, R.L. and Schmal, M. (2016) Cobalt Ferrite Nanoparticles for the Preferential Oxidation of CO. Applied Catalysis A: General, 519, 139-145. https://doi.org/10.1016/j.apcata.2016.03.024
[17]  Liu, J., Liu, B., Fang, Y., Zhao, Z., Wei, Y., Gong, X.Q., Xu, C., Duan, A. and Jiang, G. (2014) Preparation, Characterization and Origin of Highly Active and Thermally Stable Pd-Ce0.8Zr0.2O2 Catalysts via Sol-Evaporation Induced Self-Assembly Method. Environmental Science & Technology, 48, 12403-12410.
https://doi.org/10.1021/es5027008
[18]  Lee, H.I. and White, J.M. (1980) Carbon Monoxide Oxidation over Ru (001). Journal of Catalysis, 63, 261-264. https://doi.org/10.1016/0021-9517(80)90078-0
[19]  Goodman, D.W. and Peden, C.H.F. (1986) Carbon Monoxide Oxidation over Rhodium and Ruthenium: A Comparative Study. The Journal of Physical Chemistry, 90, 4839-4843.
https://doi.org/10.1021/j100411a024
[20]  Kim, Y.D., Over, H., Krabbes, G. and Ertl, G. (2000) Identification of RuO2 as the Active Phase in CO Oxidation on Oxygen-Rich Ruthenium Surfaces. Topics in Catalysis, 14, 95-100.
https://doi.org/10.1023/A:1009063201555
[21]  Over, H. and Muhler, M. (2003) Catalytic CO Oxidation over Ruthenium: Bridging the Pressure Gap. Progress in Surface Science, 72, 3-17.
https://doi.org/10.1016/S0079-6816(03)00011-X
[22]  Assmann, J., Narkhede, V., Breuer, N.A., Muhler, M., Seitsonen, A.P., Knapp, M., Crihan, D., Farkas, A., Mellau, G. and Over, H. (2008) Heterogeneous Oxidation Catalysis on Ruthenium: Bridging the Pressure and Materials Gaps and Beyond. Journal of Physics: Condensed Matter, 20, Article ID: 184017.
https://doi.org/10.1088/0953-8984/20/18/184017
[23]  Gao, F., McClure, S.M., Cai, Y., Gath, K.K., Wang, Y., Chen, M.S., Guo, Q.L. and Goodman, D.W. (2009) CO Oxidation Trends on Pt-Group Metals from Ultrahigh Vacuum to near Atmospheric Pressures: A Combined in Situ PM-IRAS and Reaction Kinetics Study. Surface Science, 603, 65-70.
https://doi.org/10.1016/j.susc.2008.10.031
[24]  Cant, N.W., Hicks, P.C. and Lennon, B.S. (1978) Steady-State Oxidation of Carbon Monoxide over Supported Noble Metals with Particular Reference to Platinum. Journal of Catalysis, 54, 372-383.
https://doi.org/10.1016/0021-9517(78)90085-4
[25]  Kiss, J.T. and Gonzalez, R.D. (1984) Catalytic Oxidation of Carbon Monoxide over Rhodium/Silicon Dioxide. An in Situ Infrared and Kinetic Study. The Journal of Physical Chemistry, 88, 898-904. https://doi.org/10.1021/j150649a015
[26]  Assmann, J., Narkhede, V., Khodeir, L., Löffler, E., Hinrichsen, O., Birkner, A., Over, H. and Muhler, M. (2004) On the Nature of the Active State of Supported Ruthenium Catalysts Used for the Oxidation of Carbon Monoxide: Steady-State and Transient Kinetics Combined with in Situ Infrared Spectroscopy. The Journal of Physical Chemistry B, 108, 14634-14642.
https://doi.org/10.1021/jp0401675
[27]  Assmann, J., Crihan, D., Knapp, M., Lundgren, E., Löffler, E., Muhler, M., Narkhede, V., Over, H., Schmid, M., Seitsonen, A.P. and Varga, P. (2005) Understanding the Structural Deactivation of Ruthenium Catalysts on an Atomic Scale under both Oxidizing and Reducing Conditions. Angewandte Chemie International Edition, 44, 917-920.
https://doi.org/10.1002/anie.200461805
[28]  Joo, S.H., Park, J.Y., Renzas, J.R., Butcher, D.R., Huang, W. and Somorjai, G.A. (2010) Size Effect of Ruthenium Nanoparticles in Catalytic Carbon Monoxide Oxidation. Nano Letters, 10, 2709-2713. https://doi.org/10.1021/nl101700j
[29]  Soliman, N.K. (2019) Factors Affecting CO Oxidation Reaction over Nanosized Materials: A Review. Journal of Materials Research and Technology, 8, 2395-2407.
https://doi.org/10.1016/j.jmrt.2018.12.012
[30]  Ma, Q., Wang, D., Wu, M., Zhao, T., Yoneyama, Y. and Tsubaki, N. (2013) Effect of Catalytic Site Position: Nickel Nanocatalyst Selectively Loaded inside or outside Carbon Nanotubes for Methane Dry Reforming. Fuel, 108, 430-438.
https://doi.org/10.1016/j.fuel.2012.12.028
[31]  Zeng, S., Zhang, L., Jiang, N., Gao, M., Zhao, X., Yin, Y. and Su, H. (2015) Multi-Wall Carbon Nanotubes as Support of Copper-Cerium Composite for Preferential Oxidation of Carbon Monoxide. Journal of Power Sources, 293, 1016-1023.
https://doi.org/10.1016/j.jpowsour.2015.04.115
[32]  Kozonoe, C.E., Brito, R.M. and Schmal, M. (2020) Influence of Feed Rate and Testing Variables for Low-Temperature Tri-Reforming of Methane on the Ni@MWCNT/Ce Catalyst. Fuel, 281, Article ID: 118749. https://doi.org/10.1016/j.fuel.2020.118749
[33]  Zhao, X. and Ando, Y. (1998) Raman Spectra and X-Ray Diffraction Patterns of Carbon Nanotubes Prepared by Hydrogen Arc Discharge. Japanese Journal of Applied Physics, 37, 4846-4849. https://doi.org/10.1143/JJAP.37.4846
[34]  Abdulrazzak, F.H., Alkiam, A.F. and Hussein, F.H. (2019) Behavior of X-Ray Analysis of Carbon Nanotubes. In: Saleh, H.E.D. and El-Sheikh, S.M.M., Eds., Chapter 7 Perspective of Carbon Nanotubes, BoD-Books on Demand, 109-124.
[35]  Bond, G.C. (1987) Heterogeneous Catalysis: Principles and Applications (Oxford Chemistry). 2nd Edition, Oxford University Press, New York.
[36]  Rojas, J.V., Toro-Gonzalez, M., Molina-Higgins, M.C. and Castano, C.E. (2016) Facile Radiolytic Synthesis of Ruthenium Nanoparticles on Graphene Oxide and Carbon Nanotubes. Materials Science & Engineering B: Solid-State Materials for Advanced Technology, 205, 28-35.
https://doi.org/10.1016/j.mseb.2015.12.005
[37]  Saleh, T.A. (2011) The Influence of Treatment Temperature on the Acidity of MWCNT Oxidized by HNO3 or a Mixture of HNO3/H2SO4. Applied Surface Science, 257, 7746-7751.
https://doi.org/10.1016/j.apsusc.2011.04.020
[38]  Santos, A.R., Menezes, D.B., Ellena, J. and Andrade, M.B. (2019) Aplicação da espectroscopia Raman na caracterização de minerais pertencentes a uma geocoleção. Química Nova, 42, 489-496.
[39]  Zdrojek, M., Gebicki, W., Jastrzebski, C., Melin, T. and Huczko, A. (2004) Studies of Multiwall Carbon Nanotubes Using Raman Spectroscopy and Atomic Force Microscopy. In: Solid State Phenomena, Trans Tech Publications Ltd., Stafa-Zurich, 265-268.
https://doi.org/10.4028/www.scientific.net/SSP.99-100.265
[40]  Foldvari, M., et al. (2012) Pharmaceutical Characterization of Solid and Dispersed Carbon Nanotubes as Nanoexcipients. International Journal of Nanomedicine, 2012, 403-415.
https://doi.org/10.2147/IJN.S27442
[41]  Shih, Y.T., Lee, K.Y. and Huang, Y.S. (2014) Electrochemical Capacitance Characteristics of Patterned Ruthenium Dioxide-Carbon Nanotube Nanocomposites Grown onto Graphene. Applied Surface Science, 294, 29-35.
https://doi.org/10.1016/j.apsusc.2013.12.145
[42]  Schmal, M. (2016) Heterogeneous Catalysis and Its Industrial Applications. Springer, Berlin. https://doi.org/10.1007/978-3-319-09250-8_1
[43]  Ananth, A., Jeong, R.H. and Boo, J.-H. (2020) Preparation, Characterization and CO Oxidation Performance of Ag2O/γ-Al2O3 and (Ag2O+RuO2)/γ-Al2O3 Catalysts. Surfaces, 3, 251-264. https://doi.org/10.3390/surfaces3020019
[44]  Her, J.H., Kennon, B.S., Shum, W.W., Stephens, P.W. and Miller, J.S. (2008) Structure and Magnetic Properties of LnIII[Ru2(CO3)4]ܮH2O. Inorganica Chimica Acta, 361, 3462-3464.
https://doi.org/10.1016/j.ica.2008.02.043
[45]  Park, J.N., Kuk Shon, J., Jin, M., Sung Kong, S., Moon, K., Ok Park, G., Boo, J.H. and Man Kim, J. (2011) Room-Temperature CO Oxidation over a Highly Ordered Mesoporous RuO2 Catalyst. Reaction Kinetics, Mechanisms and Catalysis, 103, 87-99.
https://doi.org/10.1007/s11144-011-0284-5
[46]  Reddy, B.M., Rao, K.N. and Bharali, P. (2009) Copper Promoted Cobalt and Nickel Catalysts Supported on Ceria-Alumina Mixed Oxide: Structural Characterization and CO Oxidation Activity. Industrial & Engineering Chemistry Research, 48, 8478-8486.
https://doi.org/10.1021/ie900755b

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133