2O3 Catalyst, Oscillations, Open Access Library" />

全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Temporal and Oscillatory Behavior Observed during Methanol Synthesis on a Cu/ZnO/Al2O3 (60:30:10) Catalyst

DOI: 10.4236/gsc.2021.113007, PP. 73-88

Keywords: Methanol Synthesis, Cu/ZnO/Al">2">O">3"> Catalyst, Oscillations

Full-Text   Cite this paper   Add to My Lib

Abstract:

The rate of Methanol synthesis over a Cu/ZnO/Al2O3 (60:30:10) catalyst has been measured using CO2/H2 (10:90) and CO/CO2/H2 (10:10:80) streams at 433, 443, 453, 463 and 473 K. Using the CO2/H2 stream, it requires 12 × 103 s to achieve steady-state performance; this time reduces to 5.4 × 103 s on increasing the temperature to 463 K. Using the CO/CO2/H2 stream, steady State performance is not achieved even after 14.4 × 103 s at 433 K but is achieved after 9 × 103 s at 463 K. Significant deviations from steady state behavior (~40% of steady state) are observed only at 453 K and only using the CO2/H2 feed when gas

References

[1]  Taylor, H.S. (1925) A Theory of the Catalytic Surface. Proceedings of the Royal Society of London A, 108, 105-111.
https://doi.org/10.1098/rspa.1925.0061
[2]  Somorjai, G.A. (1991) The Flexible Surface. Correlation between Reactivity and Restructuring Ability. Langmuir, 7, 3176-3182.
https://doi.org/10.1021/la00060a043
[3]  Coulman, D.J., Winterlin, J., Behm, R.J. and Ertl, G. (1990) Novel Mechanism for the Formation of Chemisorption Phases: The (2 × 1)O-Cu(110) ‘‘Added Row’’ Reconstruction. Physical Review Letters, 64, 1761-1764.
https://doi.org/10.1103/PhysRevLett.64.1761
[4]  Redenbacher, F., Sprunger, P.T., Ruan, L., Olesen, L., Stensguard, I. and Loesgaard, E. (1994) Direct Observations of Changes in Surface Structures by Scanning Tunneling Microscopy. Topics in Catalysis, 1, 325-341.
https://doi.org/10.1007/BF01492286
[5]  Ertl, G. (1991) Temporal and Spatial Self-Organisation in Catalysis at Single Crystal Surfaces. Catalysis Letters, 9, 219-230.
https://doi.org/10.1007/BF00773180
[6]  Keil, W. and Wicke, E. (1980) über die kinetischen Instabilitäten bei der CO-Oxidation an Platin-Katalysatoren. Berichte der Bunsengesellschaft für physikalische Chemie, 84, 377-383.
https://doi.org/10.1002/bbpc.19800840417
[7]  Werner, H., Herein, D., Schulz, G., Wild, W. and Schloegl, R. (1997) Reaction Pathways in Methanol Oxidation: Kinetic Oscillations in the Copper/Oxygen System. Catalysis Letters, 49, 145.
[8]  Hadden, R.A., Sakakini, B.H., Tabatabaei, J. and Waugh, K.C. (1997) Adsorption and Reaction Induced Morphological Changes of the Copper Surface of a Methanol Synthesis Catalyst. Catalysis Letters, 44, 145-151.
https://doi.org/10.1023/A:1018962016811
[9]  Bridger, G.W. and Spencer, M.S. (1989) In: Twigg, M.V., Ed, Catalyst Handbook, 2nd Edition, Wofle Press, London.
[10]  Chinchen, G.C., Hay, C.M., Vandervell, H.D. and Waugh, K.C. (1987) The Measurement of Copper Surface Areas by Reactive Frontal Chromatography. Journal of Catalysis, 103, 79-86.
https://doi.org/10.1016/0021-9517(87)90094-7
[11]  Chinchen, G.C., Waugh, K.C. and Whan, D.A. (1986) The Activity and State of the Copper Surface in Methanol Synthesis Catalysts. Applied Catalysis, 25, 101-107.
https://doi.org/10.1016/S0166-9834(00)81226-9
[12]  Chinchen, G.C., Denny, P.J., Short, G.D., Spencer, M.S., Waugh, K.C. and Whan, D.A. (1984) The Activity of Copper-Zinc Oxide-Aluminum Oxide Methanol Synthesis Catalysts. Preprints of Papers-American Chemical Society, Division of Fuel Chemistry, 29, 178.
[13]  Bowker, M., Hadden, R.A., Houghton, H., Hyland, J.N.K. and Waugh, K.C. (1988) The Mechanism of Methanol Synthesis on Copper/Zinc Oxide/Alumina Catalysts. Journal of Catalysis, 109, 263-273.
https://doi.org/10.1016/0021-9517(88)90209-6
[14]  Millar, G.J., Rochester, C.H. and Waugh, K.C. (1991) Infrared Study of Methyl Formate and Formaldehyde Adsorption on Reduced and Oxidised Silica-Supported Copper Catalysts. Molecular Physics, 76, 2785.
[15]  Hadden, R.A., Vandervell, H.D., Waugh, K.C. and Webb, G. (1988) The Adsorption and Decomposition of Carbon Dioxide on Polycrystalline Copper. Catalysis Letters, 1, 27-33.
https://doi.org/10.1007/BF00765350
[16]  Nakamura, J, Rodrigues, J.A. and Campbell, C.T. (1989) Does CO2 Dissociatively Adsorb on Cu Surfaces? Journal of Physics: Condensed Matter, 1, Article No. SB149.
https://doi.org/10.1088/0953-8984/1/SB/026
[17]  Elliott, A.J., Waston, M.J., Sakakini, B.H., Tabatabaei, J., Zemicael, F.W. and Waugh, K.C. (2002) A Study of the Activated Decomposition of CO2 on the Cu Component of a Cu/ZnO/Al2O3 Catalyst. Catalysis Letters, 79, 1-6.
https://doi.org/10.1023/A:1015388116437
[18]  Rasmussen, P.B., Holmblad, P.M., Askgaard, T., Ovesen, C.V., Stolze, P., Noeskov, J.K. and Chorkendorff, I. (1994) Methanol Synthesis on Cu(100) from a Binary Gas Mixture of CO2 and H2. Catalysis Letters, 26, 373-381.
https://doi.org/10.1007/BF00810611
[19]  Yoshihara, J., Parker, S.C., Schafer, A. and Campbell, C.T. (1995) Methanol Synthesis and Reverse Water-Gas Shift Kinetics over Clean Polycrystalline Copper. Catalysis Letters, 31, 313-324.
https://doi.org/10.1007/BF00808595
[20]  Tabatabaei, J., Watson, M.J. and Waugh, K.C. (2000) Structural Changes of the Cu Surface of a Cu/ZnO/Al2O3 Catalyst, Resulting from Oxidation and Reduction, Probed by CO Infrared Spectroscopy. Journal of Molecular Catalysis A: Chemical, 162, 297-306.
https://doi.org/10.1016/S1381-1169(00)00298-3
[21]  Elliott, A.J., Hadden, R.A., Tabatabaei, J., Waugh, K.C. and Zemicael, F.W. (1995) Inverted Temperature Dependence of the Decomposition of Carbon Dioxide on Oxide-Supported Polycrystalline Copper. Journal of Catalysis, 157, 153-161.
https://doi.org/10.1006/jcat.1995.1276
[22]  Cowap, A.J. (1999) An Investigation into the Hydrogen Adsorbed on and Absorbed in the Standard Cu/ZnO/Al2O3 and Other Oxide Supported Methanol Synthesis Catalysts. PhD Thesis, University of Manchester Institute of science and Technology (UMIST), Manchester.
[23]  Habraken, F.H.P.M., Mesters, C.M.A.M. and Biitsma, G.A. (1979) The Adsorption and Incorporation of Oxygen on Cu(110) and Its Reaction with Carbon Monoxide. Surface Science, 89, 234.
[24]  Habraken, F.H.P.M., Kieffer, E.Ph. and Biitsma, G.A. (1979) A Study of the Kinetics of the Interactions of O2 and N2O with a Cu(111) Surface and of the Reaction of CO with Adsorbed Oxygen Using Aes, LEED and Ellipsometry. Surface Science, 83, 45-59.
https://doi.org/10.1016/0039-6028(79)90479-5
[25]  Habraken, F.H.P.M., Biitsma, G.A., Hoffman, P., Hachicha, S. and Bradshaw, A.M. (1979) The Adsorption and Incorporation of Oxygen on Cu(110) and Its Reaction with Carbon Monoxide. Surface Science, 88, 285-298.
https://doi.org/10.1016/0039-6028(79)90076-1
[26]  Ertl, G. (1967) Untersuchung Von Oberflächenreaktionen An Kupfer Mittels Beugung Langsamer Elektronen (LEED). II. Surface Science, 7, 309-311.
https://doi.org/10.1016/0039-6028(67)90024-6
[27]  Bowker, M. and Bennett, R.A. (2001) The Flexible Surface or the Rigid Surface? Topics in Catalysis, 14, 85-94.
https://doi.org/10.1023/A:1009011217485
[28]  Bailey, S., Froment, G.F., Snoeck, J.W. and Waugh, K.C. (1995) A DRIFTS Study of the Morphology and Surface Adsorbate Composition of an Operating Methanol Synthesis Catalyst. Catalysis Letters, 30, 99-111.
https://doi.org/10.1007/BF00813676

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413