全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Removal of Fluoride from Water Using Mesoporous MCM-41: An Optimization Approach Using Response Surface Methodology (RSM)

DOI: 10.4236/anp.2021.103007, PP. 95-114

Keywords: MCM-41, Mesoporous Silica, Adsorption, Fluoride, Response Surface Methodology (RSM)

Full-Text   Cite this paper   Add to My Lib

Abstract:

Fluoride above 1.5 mg·L-1 is injurious to health. Removal of fluoride from water using mesoporous MCM-41 as a strong adsorbent material has been attempted. Characterization using transmission electron microscopic study of calcined MCM-41 showed the regular hexagonal array of mesoporous channels with an average size of 20 nm and the surface area (BET study) of 1306.96 m2·g-1. The average pore size of the particles was found to be 14.21 nm. A study on the effect of contact time on the removal of fluoride revealed that more than 85% uptake of fluoride onto MCM-41 was achieved at a contact time of 120 min. From the Langmuir adsorption study, the maximum sorption capacity of fluoride was found to be 63.05 mg/g at 301 K. From the thermodynamic study, the +ΔHo value of 2.29 kJ·mol-1 indicated the endothermic nature of the removal process. Application of Response Surface Model suggested that 77.88% of fluoride removal can be achieved at fluoride concentration of 10 mg·L-1, pH (6.3), and contact time of 120 min.

References

[1]  Susheela, A.K. (1919) Fluorosis Management Programme in India. Current Science, 77, 1250-1256.
[2]  World Health Organization (2008) Guidelines for Drinking-Water Quality. Vol. 1, 3rd Edition.
[3]  Chakraborti, D., Chanda, C.R., Samanta, G., Chowdhury, U.K., Mukherjee, S.C. and Pal, A.B. (2000) Fluorosis in Assam, India. Current Science, 78, 1421-1423.
[4]  Goswami, A., Raul, P.K. and Purkait, M.K. (2012) Arsenic Adsorption Using Copper (II) Oxide Nanoparticles. Chemical Engineering Research and Design, 90, 1387-1396.
https://doi.org/10.1016/j.cherd.2011.12.006
[5]  Thakur, S., Das, G., Raul, P.K. and Karak, N. (2013) Green One-Step Approach to Prepare Sulfur/Reduced Graphene Oxide Nanohybrid for Effective Mercury Ions Removal. Journal of Physical Chemistry C, 117, 7636-7642.
https://doi.org/10.1021/jp400221k
[6]  Antonelli, D.M. and Ying, J.Y. (1996) Synthesis and Characterization of Hexagonally Packed Mesoporous Tantalum Oxide Molecular Sieves. Chemistry of Materials, 8, 874.
https://doi.org/10.1021/cm9504697
[7]  Nalwa, H.S. (2004) Encyclopedia of Nanoscience and Nanotechnology. American Scientific Publishers, Los Angeles, 1-10.
[8]  Sayari, A., Jaroniec, M. and Pinnavaia, T.J. (2000) Nanoporous Materials II (Studies in Surface Science and Catalysis, Volume 129). Elsevier, Amsterdam.
https://doi.org/10.1016/S0167-2991(00)80186-X
[9]  Serrano, D.P., Aguado, J. and Escola, J.M. (2000) Catalytic Cracking of a Polyolefin Mixture over Different Acid Solid Catalysts. Industrial & Engineering Chemistry Research, 39, 1177.
https://doi.org/10.1021/ie9906363
[10]  Onyango, M.S., Masukume, M., Ochieng, A. and Otieno, F. (2010) Functionalised Natural Zeolite and Its Potential for Treating Drinking Water Containing Excess amount of Nitrate. Water SA, 36, 655.
https://doi.org/10.4314/wsa.v36i5.61999
[11]  Tuel, A. and Gontier, S. (1996) Synthesis and Characterization of Trivalent Metal Containing Mesoporous Silicas Obtained by a Neutral Templating Route. Chemistry of Materials, 8, 114-122.
https://doi.org/10.1021/cm950276j
[12]  Abdelwahab, El. Nemr, A., El. Sikaily, A. and Khaled, A. (2005) Use of Rice Husk for Adsorption of Direct Dyes from Aqueous Solution: A Case Study of Direct F. Scarlet, Egyptian. Journal of Aquatic Research, 31, 1-11.
[13]  Caponetti, E., Pedone, L., Saladino, M.L., Martino, D.C. and Nasillo, G. (2010) MCM-41-CdS Nanoparticle Composite Material: Preparation and Characterization. Microporous and Mesoporous Materials, 128, 101-107.
https://doi.org/10.1016/j.micromeso.2009.08.010
[14]  Huo, Q., Margolese, D.I. and Stucky, G.D. (1996) Surfactant Control of Phases in the Synthesis of Mesoporous Silica-Based Materials. Chemistry of Materials, 8, 1147-1160.
https://doi.org/10.1021/cm960137h
[15]  Diaz-Nava, C., Olguin, M.T. and Solache-Rios, M. (2007) Water Defluoridation by Mexican Heulandite-Clinoptilolite. Separation Science and Technology, 37, 3109-3128.
https://doi.org/10.1081/SS-120005662
[16]  Fryxell, G.E., Liu, J., Hauser, T.A., Nie, Z., Ferris, K.F., Mattigod, S., Gong, M. and Hallen, R.T. (1999) Design and Synthesis of Selective Mesoporous Anion Traps. Chemistry of Materials, 11, 2148-2154.
https://doi.org/10.1021/cm990104c
[17]  Sundaram, C.S., Viswanathan, N. and Meenakshi, S. (2008) Defluoridation Chemistry of Synthetic Hydroxyapatite at Nano Scale: Equilibrium and Kinetic Studies. Journal of Hazarous Materials, 155, 206-215.
https://doi.org/10.1016/j.jhazmat.2007.11.048
[18]  Raichur, A.M. and Basu, M.J. (2001) Adsorption of Fluoride onto Mixed Rare Earth Oxides. Separation and Purification Technology, 24, 121.
https://doi.org/10.1016/S1383-5866(00)00219-7
[19]  Yadav, A.K., Kaushik, C.P., Haritash, A.K., Singh, B., Raghuvanshi, S.P. and Kansal, A. (2007) Determination of Exposure and Probable Ingestion of Fluoride through Tea, Toothpaste, Tobacco and Pan Masala. Journal of Hazardous Materials, 142, 77-80.
https://doi.org/10.1016/j.jhazmat.2006.07.051
[20]  Prasad, M., Saxena, S. and Amritphale, S.S. (2002) Adsorption Models for Sorption of Lead and Zinc on Francolite Mineral. Industrial& Engineering Chemistry Research, 41, 105-111.
https://doi.org/10.1021/ie0102302
[21]  Meenakshi, S., Sundaram, C.S. and Sukumar, R. (2009) Fluoride Sorption by Nano-Hydroxyapatite/Chitin Composite. Journal of Hazardous Materials, 172, 147-151.
https://doi.org/10.1016/j.jhazmat.2009.06.152
[22]  Hadi, M., Samarghandi, M.R. and Mckay, G. (2010) Equilibrium Two-Parameter Isotherms of Acid Dyes Sorption by Activated Carbons: Study of Residual Errors. Chemical Engineering Journal, 160, 408.
https://doi.org/10.1016/j.cej.2010.03.016
[23]  Khan, A. and Singh, R.P. (1987) Adsorption Thermodynamics of Carbofuran on Sn(IV) Arsenosilicate in H+, Na+ and Ca2+ Forms. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 24, 306.
https://doi.org/10.1016/0166-6622(87)80259-7
[24]  Xiong, C.H., Yao, C.P., Wang, L. and Ke, J.J. (2009) Adsorption Behaviour of Cd(II) from Aqueous Solution onto Gel-Type Weak Acid Resin. Hydrometallurgy, 98, 318.
https://doi.org/10.1016/j.hydromet.2009.05.008
[25]  Zeng, L. (2004) Arsenic Adsorption from Aqueous Solutions on an Fe(III)-Si Binary Oxide Adsorbent. Water Quality Research Journal Canada, 39, 267-275.
https://doi.org/10.2166/wqrj.2004.037
[26]  Raul, P.K., Senapati, S., Sahoo, A.K., Umlong, I.M., Devi, R.R., Thakur, A.J. and Veer, V. (2014) Cu Onanorods: A Potential and Efficient Adsorbent in Water Purification. RSC Advances, 4, 40580-40587.
https://doi.org/10.1039/C4RA04619F
[27]  Horsfall, M. and Spiff, I.A. (2005) Effects of Temperature on the Sorption of Pb2+ and Cd2+ from Aqueous Solution by Caladium Bicolor (Wild Cocoyam) Biomass. Electronic Journal of Biotechnology, 8, 1010-1013.
https://doi.org/10.2225/vol8-issue2-fulltext-4
[28]  Lagergren, S. (1898) Zur Theorie der sogenannten Adsorption gelðster Stoffe. K. Sven Vetenskapsakad. Handl 24, 1-39.
[29]  Ho, Y.S. (2006) Second-Order Kinetic Model for the Sorption of Cadmium onto Tree Fern: A Comparison of Linear and Non-Linear Methods. Water Research, 40, 119-125.
https://doi.org/10.1016/j.watres.2005.10.040
[30]  Ngah, W.S.W., Fatinathan, S. and Yosop, N.A. (2011) Isotherm and Kinetic Studies on the Adsorption of Humic Acid onto Chitosan-H2SO4 Beads. Desalination, 272, 293-300.
https://doi.org/10.1016/j.desal.2011.01.024
[31]  Boparai, H.K., Joseph, M. and Carroll, D.M.O. (2011) Kinetics and Thermodynamics of Cadmium Ion Removal by Adsorption onto Nano Zero Valent Iron Particles. Journal of Hazardous Materials, 186, 458-465.
https://doi.org/10.1016/j.jhazmat.2010.11.029
[32]  Sarkar, M. and Majumdar, P. (2011) Application of Response Surface Methodology for Optimization of Heavy Metal Biosorption Using Surfactant Modified Chitosan Bead. Chemical Engineering Journal, 175, 376-387.
https://doi.org/10.1016/j.cej.2011.09.125

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133