Barium titanate tin oxides BaTi0.9Sn0.1O3 referred to as (BTSO) doped with 0.5Er3+ and co-doped with (0.75 and 1) Yb3+ ions, were prepared using a modified sol-gel method and calcinated at 1050?C in the air for 4 h. The influence of the selected rare earth element on the structure morphology, dielectric properties behavior was investigated. From TEM micrographs, it has appeared that the particles have a spherical shape with a small size in nanoscale. The average particle size is determined both by TEM and XRD diffraction was found to be in agreement and within the range between 45.9 and 57.7 nm. The effects of Lanthanide incorporation on the evolution of these nano-crystalline structures were followed by XRD and (FTIR). The XRD patterns give rise to a single perovskite phase, while the tetragonality was found to decrease gradually with Er3+ and Er3+/Yb3+ ions, respectively. FTIR results showed enhancement of the crystallinity and the absence of carbonates upon increasing Yb3+ ions concentration from 0.75 up to 1 mol%. The dielectric and conductivity properties were found to be enhanced by the nature and the concentration of the lanthanide element (Er3+, Yb3+) in the BTSO host lattice. The Curie temperature (Tc) shifted to a lower value from 117 for BTSO: 0.5Er to 93 for BTSO: 0.5Er/1Yb and the permittivity ε’ increased from 3972 to 6071, so BTSO: 0.5Er/1Yb good crystalline material candidate for capacitors application due to its higher permittivity.
References
[1]
Xu, J., Menesklou, W. and Ivers-Tiffee, E. (2004) Processing and Properties of BST Thin Films for Tunable Microwave Devices. Journal of the European Ceramic Society, 24, 1735-1739. https://doi.org/10.1016/S0955-2219(03)00485-0
[2]
Lee, B.I. (1999) Chemical Variations in Barium Titanate Powders and Dispersants. Journal of Electroceramics, 3, 53-63. https://doi.org/10.1023/A:1009966900092
[3]
Zhu, X.N., Chen, X., Tian, H. and Chen, X.M. (2017) Atomic Scale Investigation of Enhanced Ferroelectricity in (Ba,Ca)TiO3. RSC Advances, 7, 22587-22591. https://doi.org/10.1039/C7RA00662D
[4]
Rayssi, Ch., Kossi, S.El., Dhahri, J. and Khirouni, K. (2018) Frequency and Temperature-Dependence of Dielectric Permittivity and Electric Modulus Studies of the Solid Solution Ca0.85Er0.1Ti1-xCo4x/3O3 (0 ≤ x ≤ 0.1). RSC Advances, 8, 17139-17150. https://doi.org/10.1039/C8RA00794B
[5]
Narang, S.B., Kaur, D. and Pubby, K. (2015) Frequency and Temperature Dependence of Dielectric and Electric Properties of Ba2-xSm4+2x/3Ti8O24 with Structural Analysis. Materials Science-Poland, 33, 268-277. https://doi.org/10.1515/msp-2015-0034
[6]
Moya, X., Stern-Taulats, E., Crossley, S., González-Alonso, D., Kar-Narayan, S., Planes, A., Mañosa, L. and Mathur, N.D. (2013) Giant Electrocaloric Strength in Single-Crystal BaTiO3. Advanced Materials, 25, 1360-1365. https://doi.org/10.1002/adma.201203823
[7]
Jain, A. and Panwar, A.K. (2020) Synergetic Effect of Rare-Earths Doping on the Microstructural and Electrical Properties of Sr and Ca Co-Doped BaTiO3 Nanoparticles. Ceramics International, 46, 10270-10278. https://doi.org/10.1016/j.ceramint.2020.01.020
[8]
Kaddoussi, H., Gagou, Y., Lahmar, A., Allouche, B., Dellis, J.L., Courty, M., Khemakhem, H. and El Marssi, M. (2016) Ferroelectric Phase Changes and Electrocaloric Effects in Ba(Zr0.1Ti0.9)1-xSnxO3 Ceramics Solid Solution. Journal of Materials Science, 51, 3454-3462. https://doi.org/10.1007/s10853-015-9663-z
[9]
Haddadou, N., Belhadi, J., Manoun, B., Taïbi, K., Carcan, B., El Marssi, M. and Lahmar, A. (2018) Structural, Vibrational, and Dielectric Investigations of Ba0.925Bi0.05 (Ti0.95-xZrx)Sn0.05O3 Ceramics. Journal of Materials Science: Materials in Electronics, 29, 16144-16154. https://doi.org/10.1007/s10854-018-9703-y
[10]
Marković, S., Mitrić, M., Jovalekić, C. and Miljković, M. (2007) Dielectric and Ferroelectric Properties of BaTi1-xSnxO3 Multilayered Ceramics. Materials Science Forum, 555, 249-254. https://doi.org/10.4028/www.scientific.net/MSF.555.249
[11]
Tsur, Y., Dunbar, T.D. and Randall, C.A. (2001) Crystal and Defect Chemistry of Rare Earth Cations in BaTiO3. Journal of Electroceramics, 7, 25-34. https://doi.org/10.1023/A:1012218826733
[12]
Leyet, Y., Peña, R., Zulueta, Y., Guerrero, F., Anglada-Rivera, J., Romaguera, Y. and de la Cruz, J.P. (2012) Phase Transition and PTCR Effect in Erbium Doped BT Ceramics. Journal of Materials Science and Engineering B, 177, 832-837. https://doi.org/10.1016/j.mseb.2012.03.048
[13]
Zannen, M., Dietze, M., Khemakhem, H., Kabadou, A. and Es-Souni, M. (2014) The Erbium’s Amphoteric Behavior Effects on Sodium Bismuth Titanate Properties. Ceramics International, 40, 13461-13469. https://doi.org/10.1016/j.ceramint.2014.05.069
[14]
Chalfouh, C., Lahmar, A., Zghal, S., Hannachi, R., Abdelmoula, N. and Khemakhem, H. (2017) Effects of Lanthanide Amphoteric Incorporation on Structural, Electrical, and Photoluminescence Properties of BaTi0.925(Yb0.5Nb0.5)0.075O3 Ceramic. Journal of Alloys and Compounds, 711, 205-214. https://doi.org/10.1016/j.jallcom.2017.03.351
[15]
Klugpand, P. and Alexander, L.E. (1954) X-Ray Diffraction Procedure. Wiley, New York, Chapter 9, 504-524.
[16]
Zhang, K., Li, L., Wang, M. and Luo, W. (2020) Charge Compensation in Rare Earth Doped BaTiO3-Based Ceramics Sintered in Reducing Atmosphere. Ceramics International, 46, 25881-25887. https://doi.org/10.1016/j.ceramint.2020.07.072
[17]
Khandelwal, A., Gupta, R., Laishram, R. and Singh, K.C. (2019) Impact of Crystal Structure and Microstructure on Electrical Properties of Ho Doped Lead-Free BCST Piezoceramics. Ceramics International, 45, 10371-10379. https://doi.org/10.1016/j.ceramint.2019.02.095
[18]
Ansari, M.A. and Sreenivas, K. (2019) Effects of Disorder Activated Scattering and Defect-Induced Phase on the Ferroelectric Properties of BaSnxTi1-xO3 (0 ≤ x ≤ 0.28) Ceramics. Ceramics International, 45, 20738-20749. https://doi.org/10.1016/j.ceramint.2019.07.058
[19]
El-Sayed, O., Mousa, W.M., El-Mahy, S.K., Salem, M.A., Battisha, I.K., Mahani, R., Lahmer, A. and El Marssi, M. (2019) Photoluminescence, Structural, Morphology and Dielectric Properties of BaTi0.9Sn0.1O3 Doped with Nd3+ and Nd3+/Yb3+ Ions. Journal of Scientific Research in Science, 36, 248-268. https://doi.org/10.21608/jsrs.2019.57630
[20]
Ferrarelli, M.C., Tan, C.C. and Sinclair, D.C. (2011) Ferroelectric, Electrical, and Structural Properties of Dy and Sc Co-Doped BaTiO3. Journal of Materials Chemistry, 21, 6292-6299. https://doi.org/10.1039/c0jm04429f
[21]
Dunbar, T.D., Warren, W.L., Tuttle, B.A., Randall, C.A. and Tsur, Y. (2004) Electron Paramagnetic Resonance Investigations of lanthanide-Doped Barium Titanate: Dopant Site Occupancy. The Journal of Physical Chemistry B, 108, 908-917. https://doi.org/10.1021/jp036542v
[22]
Zulueta, Y.A., Guerrero, F., Leyet, Y., Anglada-Rivera, J., Gonzalez-Romero, R.L. and Melendez, J.J. (2015) Can Erbium Dopant Occupy Both Cation Sites in Cubic Barium Titanate via a Mechanism Different than Self-Compensation? Physica Status Solidi (b), 252, 508-516. https://doi.org/10.1002/pssb.201451034
[23]
Harold, P. and Leroy, E. (1974) X-Ray Diffraction Procedure: For Polycrystalline and Amorphous Materials. Wiley, New York.
[24]
Antonelli, E., Letonturier, M. and Mepeko, J.C. (2009) Microstructural, Structural and Dielectric Properties of Er3+-Modified BaTi0.85Zr0.15O3 Ceramics. Journal of the European Ceramic Society, 29, 1449-1455. https://doi.org/10.1016/j.jeurceramsoc.2008.09.009
[25]
Takada, K., Chang, E. and Smyth, D.M. (1987) Rare Earth Additions to BaTiO3. Advances in Ceramics, 19, 147-142.
[26]
Takada, K., Ichimura, H. and Smyth, D.M. (1987) Equilibrium Conductivity for Er Doped BaTiO3. Japanese Journal of Applied Physics, 26, 42. https://doi.org/10.7567/JJAPS.26S2.42
[27]
Thandar, W., Kyaw, N. and Khin, M.T. (2008) Synthesis of Barium Titanate from Titanyl Acylate Precursor by Sol-Precipitate Method. Journal of the Myanmar Academy of Arts and Science, 41, 61-70.
[28]
Gadkari, A.B., Shinde, T.J. and Vasambekar, P.N. (2009) Structural Analysis of Y3+- Doped Mg-Cd Ferrites Prepared by Oxalate Co-Precipitation Method. Materials Chemistry and Physics, 114, 505-510. https://doi.org/10.1016/j.matchemphys.2008.11.011
[29]
Chavez, E., Fuentes, S., Zarate, R.A. and Padilla-Campos, L. (2010) Structural Analysis of Nanocrystalline BaTiO3. Journal of Molecular Structure, 984, 131-136. https://doi.org/10.1016/j.molstruc.2010.09.017
[30]
Henderson, C.M.B., Charnock, J.M., Cressey, G. and Griffen, D.T. (1997) An EXAFS Study of the Local Structural Environments of Fe, Co, Zn and Mg in Natural and Synthetic Staurolites. Mining Magazine, 61, 613-625. https://doi.org/10.1180/minmag.1997.061.408.01
[31]
Wei, L.S., Lee, B.I. and Mann, L.A. (2000) Characterization of Carbonate on BaTiO3 Ceramic Powders. Materials Research Bulletin, 35, 1303-1312. https://doi.org/10.1016/S0025-5408(00)00331-7
[32]
Carnall, W.T., Beitz, J.V., Crosswhite, H., Rajnak, K. and Mann, J.B. (1983) Spectroscopic Properties of the F-Elements in Compounds and Solutions. In: Systematics and the Properties of the Lanthanides, Springer, Dordrecht, 389-450. https://doi.org/10.1007/978-94-009-7175-2_9
[33]
Mahani, R., El-Sayed, O., El-Mahy, S.K. and Battisha, I.K. (2020) Structure and Dielectric Studies of Sn4+/Er3+ Co-Doped BaTiO3 Nano-Powders. Acta Physica Polonica A, 137, 410-416. https://doi.org/10.12693/APhysPolA.137.410
[34]
Bucio, L., Orozcoand, E. and Tera, A.H. (2006) Relaxation and Conductivity Behaviour in the Compounds: FeRGe2O7 (R = Pr, Tb). Journal of Physics and Chemistry of Solids, 67, 651-658. https://doi.org/10.1016/j.jpcs.2005.10.177
[35]
Wei, X., Xu, G., Ren, Z., Wang, Y., Shen, G. and Han, G. (2008) Size-Controlled Synthesis of BaTiO3 Nanocrystals via a Hydrothermal Route. Materials Letters, 62, 3666- 3669. https://doi.org/10.1016/j.matlet.2008.04.022
[36]
Bitra, H.C.R. and Vara Prasad, B.B.V.S. (2014) Dielectric Studies of Nano Structured BaTi1-xSnxO3 Solid Solutions. International Letters of Chemistry, Physics and Astronomy, 13, 191-201. https://doi.org/10.18052/www.scipress.com/ILCPA.32.191
[37]
Garbarz-Glos, B., Lisińska-Czekaj, A., Czekaj, D. and Bąk, W. (2016) Effect of Semiconductor Element Substitution on the Electric Properties of Barium Titanate Ceramics. Archives of Metallurgy and Materials, 61, 887-890. https://doi.org/10.1515/amm-2016-0150
[38]
Upadhyay, S.K., Reddy, V.R., Bag, P., Rawat, R., Gupta, S.M. and Gupta, A. (2014) Electro-Caloric Effect in Lead-Free Sn Doped BaTiO3 Ceramics at Room Temperature and Low Applied Fields. Applied Physics Letters, 105, Article ID: 112907. https://doi.org/10.1063/1.4896044
[39]
Suyver, J.F., Grimm, J., Van Veen, M.K., Biner, D., Krämer, K.W. and Güdel, H.U. (2006) Upconversion Spectroscopy and Properties of NaYF4 Doped with Er3+, Tm3+ and/or Yb3+. Journal of Luminescence, 117, 1-12.
[40]
Zhao, H., Zhou, R. and Boa, H. (2020) Effect of La2O3 Doping on Dielectric Properties of BaZr0.1Ti0.9O3 Ceramics by SOL-GEL Method. Digest Journal of Nanomaterials and Biostructures, 15, 311-317.
[41]
Gajula, G.R., Kumar, K.C., Buddiga, L.R. and Vattikunta, N. (2019) High Frequency Studies on Dielectric, Impedance and Nyquist Properties of BaTiO3-Li0.5Fe2.5O4 Composite Ceramics Substituted with Sm and Nb for Microwave Device Applications. Journal of Materials Science: Materials in Electronics, 30, 3889-3898. https://doi.org/10.1007/s10854-019-00674-w
[42]
Xu, N., Pu, Y.P., Wang, B., Wu, H.D. and Chen, K. (2012) Microstructure and Electrical Properties of BaTiO3/Cu Ceramic Composite Sintered in Nitrogen Atmosphere. Ceramics International, 38, S249-S53. https://doi.org/10.1016/j.ceramint.2011.04.094
[43]
Behera, B., Nayak, P. and Choudhary, R.N. (2007) Dielectric Anomaly in LiCa2V5O15 Ceramics. Materials Letters, 61, 3859-3862. https://doi.org/10.1016/j.matlet.2006.12.048
[44]
Willander, M., Nur, O., Israr, M., Hamad, A., El Desouky, F., Salem, M.. and Battisha, I. (2012) Determination of A.C. Conductivity of Nano-Composite Perovskite Ba(1-x-y)Sr(x)TiFe(y)O3 Prepared by the Sol-Gel Technique. Journal of Crystallization Process and Technology, 2, 1-11. https://doi.org/10.4236/jcpt.2012.21001
[45]
Nur, O., Willander, M., Israr, M.Q., Desouky, F., Salem, M.A., Abou Hamad, A.B. and Battisha, I.K. (2012) Effect of Elevated Concentrations of Strontium and Iron on the Structural and Dielectric Characteristics of Ba(1-x-y)Sr(x)Ti Fe(y)O3 Prepared through Sol-Gel Technique. Journal of Physics B, 407, 2697-2704. https://doi.org/10.1016/j.physb.2012.03.023
[46]
Battisha, I.K., Abou hamad, A.B. and Mahani, R. (2009) Structure and Dielectric Studies of Nano-Composite Fe2O3: BaTiO3 Prepared by Sol-Gel Method. Physica B: Condensed Matter, 404, 2274-2279. https://doi.org/10.1016/j.physb.2009.04.038
[47]
Devi, S. and Jha, A.K. (2009) Structural, Dielectric and Ferroelectric Properties of Tungsten Substituted Barium Titanate Ceramics. Asian Journal of Chemistry, 21, 117-124.
[48]
AsifIqbal, M., Islama, M.U., Ali, I., Azhar khan, M. and Sadiq, I. (2014) High Frequency Dielectric Properties of Eu+3-Substituted Li-Mg Ferrites Synthesized by Sol-Gel Auto-Combustion Method. Journal of Alloys and Compounds, 586, 404-410. https://doi.org/10.1016/j.jallcom.2013.10.066
[49]
Jonscher, A.K. (1977) The “Universal” Dielectric Response. Nature, 267, 673-679. https://doi.org/10.1038/267673a0
[50]
Ravel, B., Stern, E.A., Vedrinskii, R.I. and Kraizman, V. (1998) Local Structure and the Phase Transitions of BaTiO3. Ferroelectrics, 206, 407-430. https://doi.org/10.1080/00150199808009173