全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

About the Nature of the Quantum System—An Examination of the Random Discontinuous Motion Interpretation of the Quantum Mechanics

DOI: 10.4236/jqis.2021.113008, PP. 99-111

Keywords: Quantum Mechanics, Quantum Particle, Ontology, Self-Interaction, Instantaneous Condition

Full-Text   Cite this paper   Add to My Lib

Abstract:

What is the quantum system? Consider the wave-function of the electron—what we call “single particle wave-function”—and assume that it contains N wave-packets. If we pass all the wave-packets through an electric field, all are deflected, as if each one of them contains an electron. However, if we bring any two wave-packets to travel close to one another, they don’t repel one another, as if at least one of them contains no charge. In trying to solve the measurement problem of the quantum mechanics (QM), different interpretations were proposed, each one coming with a particular ontology. However, only one interpretation paid explicit attention to the contradiction mentioned above. This interpretation was proposed by S. Gao who named it “random discontinuous motion” (RDM), because it assumes the existence of a particle that jumps from place to place at random. The particle carries all the physical properties of the respective type of particle, mass, charge, magnetic momentum, etc. It jumps under the control of an “instantaneous condition” about which Gao did not give details so far. Along with presenting problems of the QM that this interpretation solves, this text reveals difficulties vis-à-vis entanglements and the special relativity.

References

[1]  de Broglie, L. (1926) Ondes et mouvements. Gauthier-Villars, Paris.
[2]  de Broglie, L. (1030) An Introduction to the Study of the Wave Mechanics. Translation from French by H. T. Flint, Methuen & Co. Ltd., London.
[3]  Bohm, D. (1952) A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables. Part I and II. Physical Review, 85, 166-179, 180-193.
https://doi.org/10.1103/PhysRev.85.180
[4]  Hardy, L. (1992) On the Existence of Empty Waves in Quantum Theory. Physics Letters A, 167, 11-16.
https://doi.org/10.1016/0375-9601(92)90618-V
[5]  Griffiths, R.J. (2002) Consistent Quantum Theory. Cambridge University Press, Cambridge.
[6]  Griffith, R.J. (2019) The Consistent Histories Approach to Quantum Mechanics. Stanford Encyclopedia of Philosophy.
[7]  Cramer, J.G. (1986) The Transactional Interpretation of the Quantum Mechanics. Reviews of Modern Physics, 58, 647-688.
https://doi.org/10.1103/RevModPhys.58.647
[8]  Cramer, J.G. (1988) An Overview of the Transactional Interpretation. International Journal of Theoretical Physics, 27, 227-236.
https://doi.org/10.1007/BF00670751
[9]  Everett, H. (1956, 1973) The Theory of the Universal Wavefunction. Thesis, Princeton University, Princeton, 1-140.
[10]  Ghirardi, G.-C., Rimini, A. and Weber, T. (1986) Unified Dynamics for Microscopic and Macroscopic Systems. Physical Review D, 34, 470-491.
https://doi.org/10.1103/PhysRevD.34.470
[11]  Ghirardi, G.-C., Pearle, P. and Rimini, A. (1990) Markov Processes in Hilbert Space and Continuous Spontaneous Localization of Systems of Identical Particles. Physical Review A: Atomic, Molecular, and Optical Physics, 42, 78-89.
https://doi.org/10.1103/PhysRevA.42.78
[12]  Bassi, A. and Ghirardi, G.-C. (2003) Dynamical Reduction Models. Physics Reports, 379, 257-426.
https://doi.org/10.1016/S0370-1573(03)00103-0
[13]  Wechsler, S.D. (2020) In Praise and in Criticism of the Model of Continuous Spontaneous Localization of the Wave-Function. Journal of Quantum Information Science, 10, 73-103.
https://doi.org/10.4236/jqis.2020.104006
[14]  Wechsler, S.D. (2021) The Quantum Mechanics Needs the Principle of Wave-Function Collapse—But This Principle Shouldn’t Be Misunderstood. Journal of Quantum Information Science, 11, 42-63.
https://doi.org/10.4236/jqis.2021.111004
[15]  Gao, S. (2016) The Meaning of the Wave Function—In Search of the Ontology of Quantum Mechanics.
[16]  Gao, S. (2018) Is an Electron a Charge Cloud? A Reexamination of Schrödinger’s Charge Density Hypothesis. Foundations of Science, 23, 145-157.
https://doi.org/10.1007/s10699-017-9521-3
[17]  Gao, S. (2020) A Puzzle for the Field Ontologists. Foundations of Physics, 50, 1541-1553.
https://doi.org/10.1007/s10701-020-00390-0
[18]  Bedingham, D., Dürr, D., Ghirardi, G.C., Goldstein, S. and Tumulka, R. (2014) Matter Density and Relativistic Models of Wave Function Collapse. Journal of Statistical Physics, 154, 623-631.
https://doi.org/10.1007/s10955-013-0814-9
[19]  Aharonov, Y. and Bohm, D. (1959) Significance of Electromagnetic Potentials in the Quantum Theory. Physical Review, 115, 485-491.
https://doi.org/10.1103/PhysRev.115.485
[20]  Chambers, R.G. (1960) Shift of an Electron Interference Pattern by Enclosed Magnetic Flux. Physical Review Letters, 5, 3-5.
https://doi.org/10.1103/PhysRevLett.5.3
[21]  Möllenstedt, G. and Bayh, W. (1962) Messung der kontinuierlichen Phasenschiebung von Elektronenwellen im kraftfeldfreien Raum durch das magnetische vektorpotential einer Luftspule. Naturwissemchaften, 49, 81-82. English Translation “Measurement of the Continuous Phase Shift of Electron Waves in a Force-Field-Free Space through the Magnetic Vector Potential of an Air-Core Coil”.
[22]  Tonomura, A., Osakabe, N., Matsuda, T., Kawasaki, T., Endo, J., Yano, S. and Yamada, H. (1986) Evidence for Aharonov-Bohm Effect with Magnetic Field Completely Shielded from Electron Wave. Physical Review Letters, 56, 792-795.
https://doi.org/10.1103/PhysRevLett.56.792
[23]  Aharonov, Y. and Casher, A. (1984) Topological Quantum Effects for Neutral Particles. Physical Review Letters, 53, 319-321.
https://doi.org/10.1103/PhysRevLett.53.319
[24]  Kaiser, H., Arif, M., Berliner, R., Clothier, R., Werner, S.A., Cimmino, A., Klein, A.G. and Opat, G.I. (1988) Neutron Interferometry Investigation of the Aharonov-Casher Effect. Physica B+C, 151, 68-73.
https://doi.org/10.1016/0378-4363(88)90147-7
[25]  Cimmino, A., Opat, G.I., Klein, A.G., Kaiser, H., Werner, S.A., Arif, M. and Clothier, R. (1989) Observation of the Topological Aharonov-Casher Phase Shift by Neutron Interferometry. Physical Review Letters, 63, 380-383.
https://doi.org/10.1103/PhysRevLett.63.380
[26]  Koenig, M., Tschetschetkin, A., Hankiewicz, E.M., Sinova, J., Hock, V., Daumer, V., et al. (2006) Direct Observation of the Aharonov-Casher Phase. Physical Review Letters, 96, Article ID: 076804.
https://doi.org/10.1103/PhysRevLett.96.076804
[27]  Rohrlich, D. (2007) The Aharonov-Casher Effect.
[28]  Peres, A. (1978) Unperformed Experiments Have No Results. American Journal of Physics, 46, 745-747.
https://doi.org/10.1119/1.11393

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133