|
乙腈添加剂对钙钛矿太阳能电池空穴传输界面的改善研究
|
Abstract:
[1] | Kojima, A., Teshima, K., Shirai, Y., et al. (2009) Organometal Halide Perovskites as Visible-Light Sensitizers for Pho-tovoltaic Cells. Journal of the American Chemical Society, 131, 6050-6051. https://doi.org/10.1021/ja809598r |
[2] | Chang, J.A., Im, S.H., Lee, Y.H., et al. (2012) Panchromatic Pho-ton-Harvesting by Hole-Conducting Materials in Inorganic-Organic Heterojunction Sensitized-Solar Cell through the Formation of Nanostructured Electron Channels. Nano Letters, 12, 1863-1867. https://doi.org/10.1021/nl204224v |
[3] | Yang, W.S., Noh, J.H., Jeon, N.J., et al. (2015) High-Performance Photo-voltaic Perovskite Layers Fabricated through Intramolecular Exchange. Science, 348, 1234-1237. https://doi.org/10.1126/science.aaa9272 |
[4] | Kim, M., Kim, G.H., Lee, T.K., et al. (2019) Methylammonium Chlo-ride Induces Intermediate Phase Stabilization for Efficient Perovskite Solar Cells. Joule, 3, 2179-2192. https://doi.org/10.1016/j.joule.2019.06.014 |
[5] | National Renewable Energy Laboratory (2020) Best Research-Cell Efficiency Chart.
https://www.nrel.gov/pv/cell-efficiency.html |
[6] | Ding, C., Huang, R., Ahl?ng, C., et al. (2021) Synergetic Effects of Electrochemical Oxidation of Spiro-OMeTAD and Li+ Ion Migration for Improving the Performance of n-i-p Type Perovskite Solar Cells. Journal of Materials Chemistry A, 9, 7575-7585. https://doi.org/10.1039/D0TA12458C |
[7] | Agarwala, P. and Kabra, D. (2017) A Review on Triphenylamine (TPA) Based Organic Hole Transport Materials (HTMs) for Dye Sensitized Solar Cells (DSSCs) and Perovskite Solar Cells (PSCs): Evolution and Molecular Engineering. Journal of Materials Chemistry A, 5, 1348-1373. https://doi.org/10.1039/C6TA08449D |
[8] | Ball, J.M., Lee, M.M., Hey, A., et al. (2013) Low-Temperature Pro-cessed Meso-Superstructured to Thin-Film Perovskite Solar Cells. Energy & Environmental Science, 6, 1739-1743. https://doi.org/10.1039/c3ee40810h |
[9] | Xing, G., Mathews, N., Lim, S.S., et al. (2014) Low-Temperature Solu-tion-Processed Wavelength-Tunable Perovskites for Lasing. Nature Materials, 13, 476-480. https://doi.org/10.1038/nmat3911 |
[10] | Fang, Y., Dong, Q., Shao, Y., et al. (2015) Highly Narrowband Perovskite Single-Crystal Photodetectors Enabled by Surface-Charge Recombination. Nature Photonics, 9, 679-686. https://doi.org/10.1038/nphoton.2015.156 |
[11] | Tao, H., Li, Y., Zhang, C., et al. (2018) Efficiency Enhancement of Perovskite Solar Cells by Forming a Tighter Interface Contact of C/CH3NH3PbI3. Journal of Physics and Chemistry of Solids, 123, 25-31.
https://doi.org/10.1016/j.jpcs.2018.07.005 |
[12] | Wang, S., Li, X., Tong, T., et al. (2018) Sequential Processing: Spontaneous Improvements in Film Quality and Interfacial Engineering for Efficient Perovskite Solar Cells. Solar RRL, 2, Article ID: 1800027.
https://doi.org/10.1002/solr.201800027 |
[13] | Saliba, M., Matsui, T., Seo, J.Y., et al. (2016) Cesium-Containing Triple Cation Perovskite Solar Cells: Improved Stability, Reproducibility and High Efficiency. Energy & Environmental Science: EES, 9, 1989-1997.
https://doi.org/10.1039/C5EE03874J |
[14] | Jeon, N.J., Noh, J.H., Kim, Y.C., et al. (2014) Solvent Engineering for High-Performance Inorganic-Organic Hybrid Perovskite Solar Cell. Nature Materials, 13, 897-903. https://doi.org/10.1038/nmat4014 |
[15] | Wang, L., Liu, F., Liu, T., et al. (2017) Low-Temperature Processed Com-pact Layer for Perovskite Solar Cells with Negligible Hysteresis. Electrochimica Acta, 235, 640-645. https://doi.org/10.1016/j.electacta.2017.03.145 |
[16] | Zheng, D., Zhu, T. and Pauporté, T. (2020) Using Monovalent- to Trivalent-Cation Hybrid Perovskites for Producing High-Efficiency Solar Cells: Electrical Response, Impedance, and Stability. ACS Applied Energy Materials, 3, 10349-10361. https://doi.org/10.1021/acsaem.0c00884 |
[17] | Liu, Y., Bag, M., Renna, L.A., et al. (2016) Understanding Interface Engineering for High-Performance Fullerene/Perovskite Planar Heterojunction Solar Cells. Advanced Energy Materials, 6, Article ID: 1501606.
https://doi.org/10.1002/aenm.201501606 |