全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

乙腈添加剂对钙钛矿太阳能电池空穴传输界面的改善研究
Study on the Interfacial Improvement of Hole-Transport Layer in Perovskite Solar Cells via Acetonitrile Additive

DOI: 10.12677/NAT.2021.113004, PP. 27-35

Keywords: MAPbI3太阳能电池,乙腈,空穴传输界面,界面钝化
MAPbI3 Perovskite Solar Cells
, Acetonitrile, Hole Transport Interface, Interfacal Passivation

Full-Text   Cite this paper   Add to My Lib

Abstract:

钙钛矿太阳能电池凭借其高光电转化效率和易制备、低成本的优势,在目前已成为最具前途的光伏器件之一。研究表明钙钛矿层的界面修饰可有效减少界面中存在的陷阱态,并降低载流子输运势垒。本研究介绍了一种改善空穴层和钙钛矿界面的简易有效方法,即在空穴层前驱液中加入少量乙腈,少量乙腈可以腐蚀光功能层的表面使其与空穴层形成互扩散结构,进而改善两者之间的载流子传输界面。这种方法改善了空穴传输界面的点接触,减少了位错、悬挂键等复合中心,减少了缺陷能级,进而减少载流子的传输损耗以提高光电转化效率。最优处理后的电池,最优光电转化效率可达17.9%,提高了11.4%。
Due to the high power conversion efficiency, easy preparation process and lowcost, organometal halide perovskite solar cells have developed into one of the most promising photovoltaic devices. It has been found that it is effective to reduce the defect state located in perovskite film via interfacial modification of the perovskite layer. In this paper, ACN additive with low concentration was intro-duced into Spiro-OMeTAD precursor to modify the perovskite interfaces. ACN additive can dissolve impurities in the surface of the perovskite layer, leading to the formation of an inter-diffusion structure between perovskite and Spiro-OMeTAD layers. Consequently, the method can improve the electrical contact of hole transport layer and decrease recombination losses originated from dislo-cation defect or dangling bond. Consequently, the corresponding best performance device generates conversion efficiency of 17.9%, 11.4% higher than that of the pristine device.

References

[1]  Kojima, A., Teshima, K., Shirai, Y., et al. (2009) Organometal Halide Perovskites as Visible-Light Sensitizers for Pho-tovoltaic Cells. Journal of the American Chemical Society, 131, 6050-6051.
https://doi.org/10.1021/ja809598r
[2]  Chang, J.A., Im, S.H., Lee, Y.H., et al. (2012) Panchromatic Pho-ton-Harvesting by Hole-Conducting Materials in Inorganic-Organic Heterojunction Sensitized-Solar Cell through the Formation of Nanostructured Electron Channels. Nano Letters, 12, 1863-1867.
https://doi.org/10.1021/nl204224v
[3]  Yang, W.S., Noh, J.H., Jeon, N.J., et al. (2015) High-Performance Photo-voltaic Perovskite Layers Fabricated through Intramolecular Exchange. Science, 348, 1234-1237.
https://doi.org/10.1126/science.aaa9272
[4]  Kim, M., Kim, G.H., Lee, T.K., et al. (2019) Methylammonium Chlo-ride Induces Intermediate Phase Stabilization for Efficient Perovskite Solar Cells. Joule, 3, 2179-2192.
https://doi.org/10.1016/j.joule.2019.06.014
[5]  National Renewable Energy Laboratory (2020) Best Research-Cell Efficiency Chart.
https://www.nrel.gov/pv/cell-efficiency.html
[6]  Ding, C., Huang, R., Ahl?ng, C., et al. (2021) Synergetic Effects of Electrochemical Oxidation of Spiro-OMeTAD and Li+ Ion Migration for Improving the Performance of n-i-p Type Perovskite Solar Cells. Journal of Materials Chemistry A, 9, 7575-7585.
https://doi.org/10.1039/D0TA12458C
[7]  Agarwala, P. and Kabra, D. (2017) A Review on Triphenylamine (TPA) Based Organic Hole Transport Materials (HTMs) for Dye Sensitized Solar Cells (DSSCs) and Perovskite Solar Cells (PSCs): Evolution and Molecular Engineering. Journal of Materials Chemistry A, 5, 1348-1373.
https://doi.org/10.1039/C6TA08449D
[8]  Ball, J.M., Lee, M.M., Hey, A., et al. (2013) Low-Temperature Pro-cessed Meso-Superstructured to Thin-Film Perovskite Solar Cells. Energy & Environmental Science, 6, 1739-1743.
https://doi.org/10.1039/c3ee40810h
[9]  Xing, G., Mathews, N., Lim, S.S., et al. (2014) Low-Temperature Solu-tion-Processed Wavelength-Tunable Perovskites for Lasing. Nature Materials, 13, 476-480.
https://doi.org/10.1038/nmat3911
[10]  Fang, Y., Dong, Q., Shao, Y., et al. (2015) Highly Narrowband Perovskite Single-Crystal Photodetectors Enabled by Surface-Charge Recombination. Nature Photonics, 9, 679-686.
https://doi.org/10.1038/nphoton.2015.156
[11]  Tao, H., Li, Y., Zhang, C., et al. (2018) Efficiency Enhancement of Perovskite Solar Cells by Forming a Tighter Interface Contact of C/CH3NH3PbI3. Journal of Physics and Chemistry of Solids, 123, 25-31.
https://doi.org/10.1016/j.jpcs.2018.07.005
[12]  Wang, S., Li, X., Tong, T., et al. (2018) Sequential Processing: Spontaneous Improvements in Film Quality and Interfacial Engineering for Efficient Perovskite Solar Cells. Solar RRL, 2, Article ID: 1800027.
https://doi.org/10.1002/solr.201800027
[13]  Saliba, M., Matsui, T., Seo, J.Y., et al. (2016) Cesium-Containing Triple Cation Perovskite Solar Cells: Improved Stability, Reproducibility and High Efficiency. Energy & Environmental Science: EES, 9, 1989-1997.
https://doi.org/10.1039/C5EE03874J
[14]  Jeon, N.J., Noh, J.H., Kim, Y.C., et al. (2014) Solvent Engineering for High-Performance Inorganic-Organic Hybrid Perovskite Solar Cell. Nature Materials, 13, 897-903.
https://doi.org/10.1038/nmat4014
[15]  Wang, L., Liu, F., Liu, T., et al. (2017) Low-Temperature Processed Com-pact Layer for Perovskite Solar Cells with Negligible Hysteresis. Electrochimica Acta, 235, 640-645.
https://doi.org/10.1016/j.electacta.2017.03.145
[16]  Zheng, D., Zhu, T. and Pauporté, T. (2020) Using Monovalent- to Trivalent-Cation Hybrid Perovskites for Producing High-Efficiency Solar Cells: Electrical Response, Impedance, and Stability. ACS Applied Energy Materials, 3, 10349-10361.
https://doi.org/10.1021/acsaem.0c00884
[17]  Liu, Y., Bag, M., Renna, L.A., et al. (2016) Understanding Interface Engineering for High-Performance Fullerene/Perovskite Planar Heterojunction Solar Cells. Advanced Energy Materials, 6, Article ID: 1501606.
https://doi.org/10.1002/aenm.201501606

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133