全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

毫米波雷达通信一体化大规模阵列天线混合波束形成
Hybrid Beamforming of Millimeter Wave Radar Communication Integrated with Large Scale Array Antenna

DOI: 10.12677/JA.2021.102003, PP. 14-19

Keywords: 毫米波,大规模阵列天线,混合波束形成,雷达通信一体化,交替迭代优化机制
Millimeter Wave
, Large-Scale Array Antennas, Hybrid Beamforming, Radar and Communication Integration, Alternating Iterative Optimization Mechanism

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文研究毫米波车载雷达通信一体化系统中大规模阵列天线混合波束形成的优化设计问题。考虑的设计自由度包括源车辆发射端处的混合波束形成器、源车辆接收端处的雷达接收滤波器和接收车辆接收端处的通信基带合成器。本文提出一种最小化均方误差(MMSE)准则下的混合波束形成优化设计方法,在兼顾发射端模拟波束形成器单位模约束、发射端发射功率、通信数字波束、雷达最佳波束、雷达接收端信干噪比(SINR)等约束条件的前提下,将涉及多约束变量的非凸优化问题分解为四个子问题后,采用交替迭代优化机制(AIOM)求解混合波束形成问题。仿真实验表明,AIOM求解得到的大规模阵列天线混合波束形成,既有良好的收敛性,又有良好的通信与雷达折衷性能。
This paper studies the design of hybrid beamforming (HBF) for large-scale array antenna in milli-meter wave vehicle radar and communication integration system. The design freedom includes the HBF at the transmitter of the source vehicle, the radar filter at the receiver of the source vehicle and the communication baseband combiner at the receiver of the recipient vehicle. In this paper, a HBF optimization design method based on the minimum mean square error (MMSE) criterion is pro-posed, which takes into account the unit mode constraint of the transmitter analog beamformer, the transmit power constraint, the communication digital beampattern, the optimal radar beampattern and the signal to interference noise ratio (SINR) of the radar receiver. After decomposing the non-convex optimization problem with multiple variables into four subproblems, the alternating iterative optimization mechanism (AIOM) is used to solve the optimization problem. Simulation re-sults show that the HBF of large-scale array antenna obtained by AIOM has good convergence and good tradeoff performance between communication and radar.

References

[1]  Liu, F., Masouros, C., Petropulu, A.P., et al. (2020) Joint Radar and Communication Design: Applications, State-of-the-Art, and the Road Ahead. IEEE Transactions on Communications, 68, 3834-3862.
[2]  Guizani, Z. and Hamdi, N. (2016) mmWave E-Band D2D Communications for 5G-Underlay Networks: Effect of Power Allocation on D2D and Cellular Users Throughputs. 2016 IEEE Symposium on Computers and Communication, Messina, 27-30 June 2016, 114-118.
https://doi.org/10.1109/ISCC.2016.7543724
[3]  Chen, Z.M., Cao, Z.X., et al. (2018) DoA and DoD Estimation and Hybrid Beamforming for Radar-Aided mmWave MIMO Vehicular Communication Systems. Elec-tronics, 7, 40.
https://doi.org/10.3390/electronics7030040
[4]  Sohrabi, F. and Wei, Y. (2016) Hybrid Digital and Analog Beamforming Design for Large-Scale Antenna Arrays. IEEE Journal of Selected Topics in Signal Processing, 10, 501-513.
https://doi.org/10.1109/JSTSP.2016.2520912
[5]  Sohail, P., Mysore, B.N., Christos, M., et al. (2018) Phase Shifters vs Switches: An Energy Efficiency Perspective on Hybrid Beamforming. IEEE Wireless Communications Letters, 8, 13-16.
[6]  Qian, J., Lops, M., Zheng, L., et al. (2018) Joint System Design for Coexistence of MIMO Radar and MIMO Communication. IEEE Transactions on Signal Processing, 66, 3504-3519.
https://doi.org/10.1109/TSP.2018.2831624
[7]  Liu, F., Masouros, C., Li, A., et al. (2019) MU-MIMO Commu-nications with MIMO Radar: From Co-Existence to Joint Transmission. IEEE Transactions on Wireless Communica-tions, 17, 2755-2770.
https://doi.org/10.1109/TWC.2018.2803045
[8]  Seel, T., Schauer, T. and Raisch, J. (2017) Monotonic Conver-gence of Iterative Learning Control Systems with Variable Pass Length. International Journal of Control, 90, 393-406.
https://doi.org/10.1080/00207179.2016.1183172

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413