全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于区域划分拓扑分析的GVF骨架线提取算法研究
Research on GVF Skeletonization Extraction Algorithm Based on Topological Analysis of Regions Division

DOI: 10.12677/OE.2021.113015, PP. 125-131

Keywords: Snakes模型,GVF算法,拓扑分析,区域划分
Snakes Model
, GVF Algorithm, Topological Analysis, Divide Regions

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文的研究目的主要是针对传统骨架线提取算法在提取时容易出现精度低、分叉等问题而提出的一种新型区域划分拓扑分析算法。该算法在提取骨架线时采用区域划分的方法,在每个区域上进行拓扑提取,一旦出现断点噪点的矛盾问题便再次划分,直至得到理想的骨架线。通过对比发现,利用这种新型的区域划分拓扑分析算法得到了比传统算法更为完整清晰的骨架线,为后续研究提供了有力保障。
The purpose of this paper is to propose a new region division topology analysis algorithm to solve the problems of low precision and bifurcation in traditional skeleton extraction algorithm. When extracting the skeleton lines, the algorithm uses the method of region division, and extracts the topology in each region. Once the contradiction problem of breakpoint noise occurs, it divides again until the ideal skeleton line is obtained. Through the comparison, it is found that this new algorithm can get more complete and clear skeleton lines than the traditional algorithm, which provides a more powerful guarantee for the follow-up research.

References

[1]  Hisada, M., Belyaev, et al. (2002) A Skeleton-based Approach for Detection of Perceptually Salient Features on Polygonal Surfaces. Computer Graphics Forum, 21, 689-700.
https://doi.org/10.1111/1467-8659.00627
[2]  Attali, D., Boissonnat, J.D. and Edelsbrunner, H. (2009) Stability and Computation of Medial Axes: A State-of-the-Art Report. In: M?ller, T., Hamann, B. and Russell, R.D., Eds., Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration, Springer, Berlin, Heidelberg.
https://doi.org/10.1007/b106657_6
[3]  Eftekharian, A.A. and Ilie, H.T. (2009) Distance Functions and Skeletal Representations of Rigid and Non-Rigid Planar Shapes. Computer Aided Design, 41, 865-876.
https://doi.org/10.1016/j.cad.2009.05.006
[4]  Yan, H.W. (2010) Fundamental Theories of Spatial Similarity Relations in Multi-scale Map Spaces. Chinese Geographical Science, 20, 18-22.
https://doi.org/10.1007/s11769-010-0018-z
[5]  Liu, X.F., Wu, Y.L. and Hu, H. (2013) A Method of Extracting Multiscale Skeletons for Polygonal Shapes. Acta Geodaetica et Cartographica Sinica, 42, 585-594.
[6]  Chang, Y.H., Kwon, S.H. and Choi, H.I. (2012) Medial Axis Transform of a Planar Domain with Infinite Curvature Boundary Points. Computer Aided Geometric Design, 29, 281-295.
https://doi.org/10.1016/j.cagd.2012.04.001
[7]  Smogavec, G. and Zalik, B. (2012) A Fast Algorithm for Constructing Approximate Medial Axis of Polygons, Using Steiner Points. Advances in Engineering Software, 52, 1-9.
https://doi.org/10.1016/j.advengsoft.2012.05.006
[8]  Zhou, Y. and Toga, A.W. (1999) Efficient Skeletonization of Volumetric Objects. IEEE Transactions on Visualization & Computer Graphics, 5, 196-209.
https://doi.org/10.1109/2945.795212
[9]  Chung, D.H. and Sapiro, G. (2000) Segmentation-Free Skeletonization of Gray-Scale Images via PDEs. IEEE, 2, 927-930.
[10]  Xu, W., Chen, T., Zhang, J., et al. (2015) Two Parabolic-Hyperbolic Oriented Partial Differential Equations for Denoising in Electronic Speckle Pattern Interferometry Fringes. Applied Optics, 54, 4720-4726.
https://doi.org/10.1364/AO.54.004720
[11]  Guo, B., Wang, T., Zhao, R., et al. (2010) Research on Algorithm of Polygon Skeleton Line Extracting. Bulletin of Surveying and Mapping, 33, 17-19.
[12]  Montero, A.S and Lang, J. (2012) Skeleton Pruning by Contour Approximation and the Integer Medial Axis Transform. Computers & Graphics, 36, 477-487.
https://doi.org/10.1016/j.cag.2012.03.029
[13]  Ivanov, D., Kuzmin, E. and Burtsev, S. (2000) Efficient Integer-Based Skeletonization Algorithm. Computers & Graphics, 24, 41-51.
https://doi.org/10.1016/S0097-8493(99)00136-3
[14]  Xu, C. and Prince, J.L. (1998) Snakes, Shapes, and Gradient Vector Flow. IEEE Transactions on Image Processing, 7, 359-369.
https://doi.org/10.1109/83.661186
[15]  Helman, J. and Hesselink, L. (1989) Representation and Display of Vector Field Topology in Fluid Flow Data Sets. Computer, 22, 27-36.
https://doi.org/10.1109/2.35197
[16]  Kass, M., Witkin, A., Terzopoulos. (1988) Snakes: Active Contour Models. International Journal of Computer Vision, 1, 321-331.
https://doi.org/10.1007/BF00133570
[17]  Qin, L., Zhu, C., Zhao, Y., et al. (2013) Generalized Gradient Vector Flow for Snakes: New Observations, Analysis, and Im-provement. IEEE Transactions on Circuits & Systems for Video Technology, 23, 883-897.
https://doi.org/10.1109/TCSVT.2013.2242554
[18]  Cohen, L. and Cohen, I. (1999) Finite Element Methods for Active Contour Models and Balloons for 2D and 3D Images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15, 1131-1147.
https://doi.org/10.1109/34.244675
[19]  Peikert, R. and Sadlo, F. (2007) Topology-Guided Visualization of Constrained Vector Fields. In: Hauser, H., Hagen, H and Theisel, H., Eds., Topology-Based Methods in Visualization, Springer, Berlin, Heidelberg, 21-33.
https://doi.org/10.1007/978-3-540-70823-0_2
[20]  Helman, J.L. and Hesselink, L. (1991) Visualizing Vector Field Topology in Fluid Flows. IEEE Computer Graphics and Applications, 11, 36-46.
https://doi.org/10.1109/38.79452

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133