全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Structural, Theoretical and Biological Studies of (Z)-3-Amino-N-(3-Amino Pyrazine-2-Carbonyl) Pyrazine-2-Carbohydrazonic Acid (APA; L) and Its Cu2+, Co2+, Pt4+ and Pd2+ Chelates

DOI: 10.4236/ojic.2021.114010, PP. 145-175

Keywords: Aminopyrazine, Density Function Theory Calculations, Antioxidant and Cytotoxic Activity, Biological Studies

Full-Text   Cite this paper   Add to My Lib

Abstract:

New chelates derived from the novel ligand, (Z)-3-amino-N-(3-amino pyrazine-2-carbonyl)pyrazine-2-carbohydrazonic acid (APA, L), with Cu2+, Co2+, Pt4+ and Pd2+ salts were investigated. The results suggest that APA acts as mononegative tridentate in the case of Cu2+, binegative tetradentate in the case of Co2+ and as mononegative bidentate towards Pt4+ and Pd2+ chelates. The results of the corrected μeff. and spectral suggest the structures of the isolated chelates. The results of the corrected μeff. and spectral suggest the geometries of the isolated chelates. Molecular modeling is deduced and chemical reactivity, energy components for chelates and also MEP for APA is illustrated. In Vitro, the SOD and radical scavengers like activity of the synthesized compounds Hep G2 liver cancer cells and cytotoxic activity were checked. Metal chelates show potent anti-oxidative activity. The results of cytotoxic activity assay against hepatocellular carcinoma cell line Hep G2 confirmed that Pt4+ complex has the highest value, while APA, Cu2+, Co2+ and Pd2+ chelates have no significant cytotoxic activity.

References

[1]  Kerru, N., Gummidi, L., Maddila, S., Gangu, K.K. and Jonnalagadda, S.B. (2020) A Review on Recent Advances in Nitrogen-Containing Molecules and Their Biological Applications. Molecules, 25, 1909-1951.
https://doi.org/10.3390/molecules25081909
[2]  Jampilek, J. (2019) Heterocycles in Medicinal Chemistry. Molecules, 24, 3839-3842.
https://doi.org/10.3390/molecules24213839
[3]  Hosseinzadeh, Z., Ramazani, A. and Razzaghi-Asl, N. (2018) Anti-Cancer Nitrogen-Containing Heterocyclic Compounds. Current Organic Chemistry, 23, 2256-2279.
https://doi.org/10.2174/1385272822666181008142138
[4]  Shetty, N and Gupta, S. (2014) Eribulin Drug Review. South Asian Journal of Cancer, 3, 57-59.
https://doi.org/10.4103/2278-330X.126527
[5]  Welsh, S and Corrie, P (2015) Management of BRAF and MEK Inhibitor Toxicities in Patients with Metastatic Melanoma. Therapeutic Advances in Medical Oncology, 7, 122-136.
https://doi.org/10.1177/1758834014566428
[6]  Kakkar, S., Kumar, S., Narasimhan1, B., Lim, S.M, Ramasamy, K. Mani, V. and Shah, S.A.A. (2018) Design, Synthesis and Biological Potential of Heterocyclic Benzoxazole Scaffolds as Promising Antimicrobial and Anticancer Agents. Chemistry Central Journal, 96, Article No. 96.
https://doi.org/10.1186/s13065-018-0464-8
[7]  Schneider, M.R. (1987) Hydroxy Substituted 10-Ethyl-9-phenylphenanthrenes: Compounds for the Investigation of the Influence of E, Z-Isomerization on the Biological Properties of Tumor Inhibiting 1.1.2-Triphenylbutenes. Archiv der Pharmazie, 320, 159-166.
https://doi.org/10.1002/ardp.19873200212
[8]  Nawrocka, W. and Stasko, J. (1997) New Derivatives of 3Amino-2(1H)-Thioxo-4(3H)-Quinazolinone. Part II. Reaction of 3-Amino-2(1H)-Thioxo-4(3H)-Quinazolinone with Cyanogen Bromide. Polish Journal of Chemistry, 71, 792-796.
[9]  Nawrocka, W., Sztuba, B., Drys, A., Wietrzyk, J., Kosendiak, J. and Opolski, A. (2014) Synthesis and AntiProliferative Activity in vitro of New 2-Aminobenzimidazole Derivatives. Reaction of 2-Arylideneaminobenzimidazole with Selected Nitriles Containing Active Methylene Group. Central European Journal of Chemistry, 12, 1047-1055.
https://doi.org/10.2478/s11532-014-0533-3
[10]  Milczarska, B., Gobis, K., Foks, H., Golunski, L.L. and Sowinski, P. (2012) The Synthesis of 3-Amino-Pyrazine-2-Carbohydrazide and 3-Amino-N’-Methylpyrazine-2-Carbohydrazide Derivatives. Heterocyclic Chemistry, 49, 845-850.
https://doi.org/10.1002/jhet.877
[11]  Bergman, J. and Brynolf, A. (1990) Synthesis of Chrysogine, a Metabolite of Penicillium chrysogenum and Some Related 2-Substituted 4-(3H)-Quinazolinones. Tetrahedron, 46, 1295-1310.
https://doi.org/10.1016/S0040-4020(01)86694-1
[12]  Jakobsen, P., Horneman, A.M. and Persson, E. (2000) Inhibitors of the Tissue Factor/Factor VIIa-Induced Coagulation: Synthesis and in Vitro Evaluation of Novel 2-Aryl Substituted Pyrid. Bioorganic & Medicinal Chemistry, 8, 2803-2812.
[13]  Maga, J.A. (1992) Pyrazine Update. Food Reviews International, 8, 479-558.
https://doi.org/10.1080/87559129209540951
[14]  Yamaguchi, T., Ito, S., Kashige, N., Nakahara, K. and Harano, K. (2007) The Relationship between the Chemical Structures of Dihydropyrazine Derivatives and DNA Strand-Breakage Activity. Chemical and Pharmaceutical Bulletin, 55, 532-536.
https://doi.org/10.1248/cpb.55.532
[15]  Dolezal, M. (2006) Biologically Active Pyrazines of Natural and Synthetic Origin. Chemické Listy, 100, 959-966.
[16]  Vogel, A.I. (1961) A Text Book of Quantitative Inorganic Analysis. Longmans, London.
[17]  Bain, G.A. and John, F. (2008) Diamagnetic Corrections and Pascal’s Constant. Journal of Chemical Education, 85, 532-536.
https://doi.org/10.1021/ed085p532
[18]  Nishikimi, M., Appaji, N. and Yagi, K. (1972) The Occurrence of Superoxide Anion in the Reaction of Reduced Phenazine Methosulfate and Molecular Oxygen. Biochemical and Biophysical Research Communications, 46, 849-854.
https://doi.org/10.1016/S0006-291X(72)80218-3
[19]  Selvakumaran, M., (2003) Enhanced Cisplatin Cytotoxicity by Disturbing the Nucleotide Excision Repair Pathway in Ovarian Cancer Cell Line. Cancer Research, 63, 1311-3116.
[20]  Delley, B. (1990) An All-Electron Numerical Method for Solving the Local Density Functional or Pyatomic Molecules. Journal of Chemical Physics, 92, 508-517.
https://doi.org/10.1063/1.458452
[21]  Materials Studio 6.0 Copyright (2009) Accelrys Software Inc.
[22]  Hehre, W.J., Radom, L., Schleyer, P.V.R. and Pople, J.A. (1986) Ab Initio Molecular Orbital Theory. John Wiley & Sons, New York.
[23]  Hammer, B., Hansen, L.B. and Nørskov, J.K. (1999) Improved Adsorption Energetics within Density-Functional Theory Using Revised Perdew-Burke-Ernzerh of functionals. Physical Review B, 59, 7413-7421.
https://doi.org/10.1103/PhysRevB.59.7413
[24]  Matveev, A., Staufer, M., Mayer, M. and Roesch, N. (1999) Density Functional Study of Small Molecules and Transition-Metal Carbonyls Using Revised PBE Functional. International Journal of Quantum Chemistry, 75, 863-873.
https://doi.org/10.1002/(SICI)1097-461X(1999)75:4/5<863::AID-QUA51>3.0.CO;2-T
[25]  Geary, W.J. (1971) The Use of Conductivity Measurements in Organic Solvents for the Characterization of Coordination Compounds. Coordination Chemistry Reviews, 7, 81-122.
https://doi.org/10.1016/S0010-8545(00)80009-0
[26]  Ketcham, K.A., Garcia, I., Swearingen, J.K., El-Sawaf, A.K., Bermejo, E., Castineiras, A. and West, D.X. (2002) Spectral Studies and X-Ray Crystal Structures of Three Nickel(II) Complexes of 2-Pyridineformamide 3-Piperidylthiosemicarbazon. Polyhedron, 21, 859-865.
https://doi.org/10.1016/S0277-5387(02)00853-7
[27]  Salah, S., El-Wahab, A., Zeinab, H., Farag, R.S. and Mostafa, M.M. (2014) Synthesis, Characterization and Modeling Structures of Isatin-3-Girard T (IGT) and P (IGP) Hydrazone Complexes. Spectrochimica Acta, 124, 579-587.
https://doi.org/10.1016/j.saa.2014.01.082
[28]  Alpert, N.L., Keiser, W.E. and Szmanski, H.A. (1970) IR Theory and Practice of Infrared Spectroscopy, Plenum Press, New York.
https://doi.org/10.1007/978-1-4684-8160-0_1
[29]  Azhari, S.J., Mlahi, M.R., Al-Asmy, A.A. and Mostafa, M.M. (2015) Synthesis of Novel Binary and Ternary Complexes Derived from 1-(2-Hydroxybenzoyl)-4-Phenylthiosemicarbazide (L1) and 2,2’-Dipyridyl (L2) with CoII, CuII and ZnII Salts. Spectrochimica Acta, 36, 185-191.
https://doi.org/10.1016/j.saa.2014.09.012
[30]  Nakamoto, K. (2009) Infrared and Raman Spectra of Inorganic and Coordination Compounds. 6th Edition, John Wiley and Sons, Inc., Hoboken.
https://doi.org/10.1002/9780470405840
[31]  Ferraro, J.R. and Walker, W.R. (1965) Infrared Spectra of Hydroxy-Bridged Copper(II) Compounds. Inorganic Chemistry, 4, 1382-1386.
https://doi.org/10.1021/ic50032a002
[32]  Rageovic, K.C., Kakurinov, V.V., Molnar, D.G. and Buzarovska, A. (2001) Synthesis, Antibacterial and Antifungal Activity of 4-Substituted-5-Aryl-1,2,4-Triazoles. Molecules, 6, 815-824.
https://doi.org/10.3390/61000815
[33]  Ramachandran, R., Rani, M. and Kabilan, S.J. (2010) Synthesis, Structure and Conformational Analysis of 2,4-diaryl-3-azabicyclo[3.3.1]nonan-9-one Thiosemicarbazones and Semicarbazones. Journal of Molecular Structure, 970, 42-50.
https://doi.org/10.1016/j.molstruc.2010.02.005
[34]  Kidrič, J., Hadži, D., Kocjan, D. and Rutar, V. (1981) 1H and13C NMR Study of 8-Hydroxyquinoline and Some of Its 5-Substituted Analogues. Organic Magnetic Resonance, 15, 280-284.
https://doi.org/10.1002/mrc.1270150314
[35]  Silverstein R.M. and Bassler, G.C. (1967) Spectroscopic Identification of Organic Compounds. Wiley, New York.
[36]  Tossidis, I.A., Bolos, C.A., Aslinidis, P.N. and Katsoulos, G.A. (1987) Monohalogenobenzoylhydrazones III. Synthesis and Structural Studies of Pt(II), Pd(II) and Rh(III) Complexes of Di-(Pyridyl)Ketonechlorobenzoyl Hydrazones. Inorganica Chimica Acta, 133, 275-280.
https://doi.org/10.1016/S0020-1693(00)87779-8
[37]  Rao, C.N.R. (1975) Ultraviolet and Visible Spectroscopy. Plenum Press, New York.
[38]  Lever, A.B.P. (1968) Inorganic Electronic Spectroscopy. Elsevier, Amsterdam.
[39]  Kato, M., Jonassen, K.B. and Fanning, G.C. (1964) Copper(II) Complexes with Subnormal Magnetic Moments. Chemical Reviews, 64, 99-128.
https://doi.org/10.1021/cr60228a003
[40]  Kettle, S.F.A. (1969) Coordination Compounds. Thomas Nelson and Sons Let, London.
[41]  Lewis, J. and Wilkins, R.G. (1960) Modern Coordination Chemistry. Interscince, New York.
[42]  Al-assy, W.H., El-askalany, A.H. and Mostafa, M.M. (2013) Structural Comparative Studies on New Mn(II), Cr(III) and Ru(III) Complexes Derived from 2,4,6-Tri-(2-Pyridyl)-1,3,5-Triazine (TPTZ) Spectrochimica Acta, 116, 401-407.
https://doi.org/10.1016/j.saa.2013.07.086
[43]  Yousef, T.A., El-Reash, G.M.A. and El Morshedy, R.M. (2012) Quantum Chemical Calculations, Experimental Investigations and DNA Studies on (E)2-((3-Hydroxy-Naphthalen-2-yl) Methylene)-N-(Pyridin-2-yl) Hydrazine Carbothioamide and Its Mn(II), Ni(II), Cu(II), Zn(II) and Cd(II) Complexes. Polyhedron, 45, 71-85.
https://doi.org/10.1016/j.poly.2012.07.041
[44]  Linert, W. and Taha, A. (1994) Co-ordination of Solvent Molecules to Square-Planar Mixed-Ligand Nickel(II) Complexes. A Thermodynamic and Quantum-Mechanical Study. Journal of the Chemical Society, Dalton Transactions, 7, 1091-1095.
https://doi.org/10.1039/dt9940001091
[45]  Govindarajan, M., Periandy, S. and Carthigayen, K. (2012) FT-IR and FT-Raman Spectra, Thermodynamical Behavior, HOMO and LUMO, UV, NLO Properties, Computed Frequency Estimation Analysis and Electronic Structure Calculations on α-Bromotoluene. Spectrochimica Acta, 97, 41-422.
https://doi.org/10.1016/j.saa.2012.06.028
[46]  Pearson, R.G. (1989) Estimating Vorization Enthalpies of Organic Compounds with Single and Multiple Substitution. The Journal of Organic Chemistry, 54, 5250-5256.
https://doi.org/10.1021/jo00283a016
[47]  Padmanabhan, J., Parthasarathi, R., Subramanian, V. and Chattaraj, P. (2007) Density Functional Tanalysis of Molybdenum Isotope Fractionation. The Journal of Physical Chemistry A, 111, 12434-12438.
https://doi.org/10.1021/jp074318q
[48]  Parthasarathi, R., Padmanabhan, J., Sarkar, U., Maiti, B., Subramanian, V. and Chattaraj, P.K. (2003) Toxicity Analysis of Benzidine through Chemical Reactivity and Selectivity Profiles: A DFT Approach. Internet Electronic Journal of Molecular Design, 2, 798-813.
[49]  Scrocco, E. and Tomasi, J. (1978) Electronic Molecular Structure, Advances in Quantum Chemistry. Academic Press, Cambridge, MA.
[50]  Luque, F.J., López, J.M. and Orozco, M. (2000) Perspective on “Electrostatic Interactions of a Solute with a Continuum. A Direct Utilization of Ab initio Molecular Potentials for the Prevision of Solvent Effects”. Theoretical Chemistry Accounts, 103, 343-345.
https://doi.org/10.1007/s002149900013
[51]  Okulik, N. and Ubert, A.H.J. (2005) Theoretical Analysis of the Reactivity Sites of Non-Inflammatory Drugs. Internet Electronic Journal of Molecular Design, 4, 17-30.
[52]  Politzer, P., Laurence, P.R. and Jayasuriya, K. (1985) Molecular Electrostatic Potentials: An Effective Tool for the Elucidation of Biochemical Phenomena. Environmental Health Perspectives, 61, 191-202.
https://doi.org/10.1289/ehp.8561191
[53]  Scrocco, E. and Tomasi, J. (1973) The Electrostatic Molecular Potential as a Tool for the Interpretation of Molecular Properties. In: New Concepts II, Topics in Current Chemistry Fortschritte der Chemischen Forschung, Vol. 42, Springer, Berlin, 95-170.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413