全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Cancer Susceptibility for Male Breast Cancer Assessed by SNP-A Analysis and Risk Alleles of TP53, MDM2, VEGF, VEGFR1, HIF1A and BRCA1

DOI: 10.4236/abcr.2021.104018, PP. 218-233

Keywords: Breast Cancer, Aneuploidy, Polymorphism, CN-LOH, SNP-A

Full-Text   Cite this paper   Add to My Lib

Abstract:

Male Breast Cancer (MBC) has a familial component thus identification of polymorphic risk alleles of candidate genes and/or cytogenetic anomalies may help to predict the risk for the offspring of MBC patients. The conventional metaphase cytogenetics can indicate loci that are hotspots while analysis by single nucleotide polymorphism arrays (SNP-A) can identify chromosomal defects which may play a role in the etiology of cancer. A cumulative genotype risk due to each allele of candidate genes of the signaling pathways regulating c-MYC, HIF1A, TP53 and BRCA1 may be a factor facilitating cancer development. Cancer risk was assessed in a 35-year-old healthy son of a 60-year-old MBC patient with a family history of cancer by metaphase cytogenetics, SNP-A and analysis of 25 polymorphisms in six genes TP53, MDM2, VEGF, VEGFR1, HIF1A, and BRCA1. The risk genotype GG-TT of MDM2 309T > G and

References

[1]  Rosenblatt, K.A., Thomas, D.B., McTiernan, A., Austin, M.A., Stalsberg, H., Stemhagen, A., Thompson, W.D., Curnen, M.G., Satariano, W., Austin, D.F., et al. (1991) Breast Cancer in Men: Aspects of Familial Aggregation. Journal of the National Cancer Institute, 83, 849-854.
https://doi.org/10.1093/jnci/83.12.849
[2]  Peto, J. and Houlston, R.S. (2001) Genetics and the Common Cancers. European Journal of Cancer, 37, 88-96.
https://doi.org/10.1016/S0959-8049(01)00255-6
[3]  Dumitrescu, R.G. and Cotarla, I. (2005) Understanding Breast Cancer Risk-Where Do We Stand in 2005? Journal of Cellular and Molecular Medicine, 9, 208-221.
https://doi.org/10.1111/j.1582-4934.2005.tb00350.x
[4]  Fels, D.R. and Koumenis, C. (2005) HIF-1α and P53: The ODD Couple? Trends in Biochemical Sciences, 30, 426-429.
https://doi.org/10.1016/j.tibs.2005.06.009
[5]  Kimbro, K.S. and Simons, J.W. (2006) Hypoxia-Inducible Factor-1 in Human Breast and Prostate Cancer. Endocrine-Related Cancer, 13, 739-749.
https://doi.org/10.1677/erc.1.00728
[6]  Roy, H., Bhardwaj, S. and Yla-Herttuala, S. (2006) Biology of Vascular Endothelial Growth Factors. FEBS Letters, 580, 2879-2887.
https://doi.org/10.1016/j.febslet.2006.03.087
[7]  Saponaro, C., Malfettone, A., Ranieri, G., Danza, K., Simone, G., Paradiso, A. and Mangia, A. (2013) VEGF, HIF-1α Expression and MVD as an Angiogenic Network in Familial Breast Cancer. PLoS ONE, 8, e53070.
https://doi.org/10.1371/journal.pone.0053070
[8]  Lyden, D., Hattori, K., Dias, S., Costa, C., Blaikie, P., Butros, L., Chadburn, A., Heissig, B., Marks, W., Witte, L., Wu, Y., Hicklin, D., Zhu, Z., Hackett, N.R., Crystal, R.G., Moore, M.A., Hajjar, K.A., Manova, K., Benezra, R. and Rafii, S. (2001) Impaired Recruitment of Bone-Marrow-Derived Endothelial and Hematopoietic Precursor Cells Blocks Tumor Angiogenesis and Growth. Nature Medicine, 7, 1194-1201.
https://doi.org/10.1038/nm1101-1194
[9]  Chen, S. and Parmigiani, G. (2007) Meta-Analysis of BRCA1 and BRCA2 Penetrance. Journal of Clinical Oncology, 25, 1329-1333.
https://doi.org/10.1200/JCO.2006.09.1066
[10]  Ripperger, T., Gadzicki, D., Meindl, A. and Schlegelberger, B. (2009) Breast Cancer Susceptibility: Current Knowledge and Implications for Genetic Counselling. European Journal of Human Genetics, 17, 722-731.
https://doi.org/10.1038/ejhg.2008.212
[11]  Liede, A., Karlan, B.Y. and Narod, S.A. (2004) Cancer Risks for Male Carriers of Germline Mutations in BRCA1 or BRCA2: A Review of the Literature. Journal of Clinical Oncology, 22, 735-742.
https://doi.org/10.1200/JCO.2004.05.055
[12]  Deb, S., Johansson, I., Byrne, D., Nilsson, C., Investigators, K., Constable, L., Fjällskog, M.L., Dobrovic, A., Hedenfalk, I. and Fox, S.B. (2014) Nuclear HIF1A Expression Is Strongly Prognostic in Sporadic But Not Familial Male Breast Cancer. Modern Pathology, 27, 1223-1230.
https://doi.org/10.1038/modpathol.2013.231
[13]  Guo, Y. and Jamison, D.C. (2005) The Distribution of SNPs in Human Gene Regulatory Regions. BMC Genomics, 6, 140.
https://doi.org/10.1186/1471-2164-6-140
[14]  O’Keefe, C., McDevitt, M.A. and Maciejewski, J.P. (2010) Copy Neutral Loss of Heterozygosity: A Novel Chromosomal Lesion in Myeloid Malignancies. Blood, 115, 2731-2739.
https://doi.org/10.1182/blood-2009-10-201848
[15]  Shim, H.J., Yun, J.Y., Hwang, J.E., Bae, W.K., Cho, S.H., Lee, J.H., Kim, H.J. and Chung, I.J. (2010) BRCA1 and XRCC1 Polymorphisms Associated with Survival in Advanced Gastric Cancer Treated with Taxane and Cisplatin. Cancer Science, 101, 1247-1254.
https://doi.org/10.1111/j.1349-7006.2010.01514.x
[16]  Willems, P., Magri, V., Cretnik, M., Fasano, M., Jakubowska, A., Levanat, S., Lubinski, J., Marras, E., Musani, V., Thierens, H., Vandersickel, V., Perletti, G. and Vral, A. (2009) Characterization of the c.190T>C Missense Mutation in BRCA1 Codon 64 (Cys64Arg). International Journal of Oncology, 34, 1005-1015.
https://doi.org/10.3892/ijo_00000226
[17]  Gajalakshmi, P., Natarajan, T.G., Rani, D.S. and Thangaraj, K. (2007) A Novel BRCA1 Mutation in an Indian Family with Hereditary Breast/Ovarian Cancer. Breast Cancer Research and Treatment, 101, 3-6.
https://doi.org/10.1007/s10549-006-9267-z
[18]  Anagnostopoulos, T., Pertesi, M., Konstantopoulou, I., Armaou, S., Kamakari, S., Nasioulas, G., Athanasiou, A., Dobrovic, A., Young, M.A., Goldgar, D., Fountzilas, G. and Yannoukakos, D. (2008) G1738R Is a BRCA1 Founder Mutation in Greek Breast/Ovarian Cancer Patients: Evaluation of Its Pathogenicity and Inferences on Its Genealogical History. Breast Cancer Research and Treatment, 110, 377-385.
https://doi.org/10.1007/s10549-007-9729-y
[19]  Pinto, G.R., Yoshioka, F.K., Silva, R.L., Clara, C.A., Santos, M.J., Almeida, J.R., Burbano, R.R., Rey, J.A. and Casartelli, C. (2008) Prognostic Value of TP53 Pro47Ser and Arg72Pro Single Nucleotide Polymorphisms and the Susceptibility to Gliomas in Individuals from Southeast Brazil. Genetics and Molecular Research, 7, 207-216.
https://doi.org/10.4238/vol7-1gmr415
[20]  Kazemi, M., Salehi, Z. and Chakosari, R.J. (2009) TP53 Codon 72 Polymorphism and Breast Cancer in Northern Iran. Oncology Research, 18, 25-30.
https://doi.org/10.3727/096504009789745629
[21]  Costa, S., Pinto, D., Pereira, D., Rodrigues, H., Cameselle-Teijeiro, J., Medeiros, R. and Schmitt, F. (2008) Importance of TP53 Codon 72 and Intron 3 Duplication 16 bp Polymorphisms in Prediction of Susceptibility on Breast Cancer. BMC Cancer, 8, 32.
https://doi.org/10.1186/1471-2407-8-32
[22]  Pilger, D.A., Lopez, P.L., Segal, F. and Leistner-Segal, S. (2007) Analysis of R213R and 13494 g>a Polymorphisms of the p53 Gene in Individuals with Esophagitis, Intestinal Metaplasia of the Cardia and Barrett’s Esophagus Compared with a Control Group. Genomic Medicine, 1, 57-63.
https://doi.org/10.1007/s11568-007-9007-4
[23]  Buraczynska, M., Ksiazek, P., Baranowicz-Gaszczyk, I. and Jozwiak, L. (2007) Association of the VEGF Gene Polymorphism with Diabetic Retinopathy in Type 2 Diabetes Patients. Nephrology Dialysis Transplantation, 22, 827-832.
https://doi.org/10.1093/ndt/gfl641
[24]  Wang, T., Hu, K., Ren, J., Zhu, Q., Wu, G. and Peng, G. (2010) Polymorphism of Vegf-2578C/A Associated with the Risk and Aggressiveness of Nasopharyngeal Carcinoma in a Chinese Population. Molecular Biology Reports, 37, 59-65.
https://doi.org/10.1007/s11033-009-9526-2
[25]  Lachheb, J., Chelbi, H., Ben Dhifallah, I., Ammar, J., Hamzaoui, K. and Hamzaoui, A. (2008) Association of Vascular Endothelial Growth Factor Polymorphisms with Asthma in Tunisian Children. Gene Regulation and Systems Biology, 2, 89-96.
https://doi.org/10.1177/117762500800200003
[26]  Churchill, A.J., Carter, J.G., Ramsden, C., Turner, S.J., Yeung, A., Brenchley, P.E. and Ray, D.W. (2008) VEGF Polymorphisms Are Associated with Severity of Diabetic Retinopathy. Investigative Ophthalmology & Visual Science, 49, 3611-3616.
https://doi.org/10.1167/iovs.07-1383
[27]  Tavakkoly-Bazzaz, J., Amoli, M.M., Pravica, V., Chandrasecaran, R., Boulton, A.J., Larijani, B. and Hutchinson, I.V. (2010) VEGF Gene Polymorphism Association with Diabetic Neuropathy. Molecular Biology Reports, 37, 3625-3630.
https://doi.org/10.1007/s11033-010-0013-6
[28]  Apaydin, I., Konac, E., Onen, H.I., Akbaba, M., Tekin, E. and Ekmekci, A. (2008) Single Nucleotide Polymorphisms in the Hypoxia-Inducible Factor-1α (HIF-1α) Gene in Human Sporadic Breast Cancer. Archives of Medical Research, 39, 338-345.
https://doi.org/10.1016/j.arcmed.2007.11.012
[29]  Wang, X., Yang, J., Ho, B., Yang, Y., Huang, Z., Zhang, Z. and Zhang, G. (2009) Interaction of Helicobacter pylori with Genetic Variants in the MDM2 Promoter, Is Associated with Gastric Cancer Susceptibility in Chinese Patients. Helicobacter, 14, 114-119.
https://doi.org/10.1111/j.1523-5378.2009.00712.x
[30]  Rodrigues, P., Furriol, J., Tormo, E., Ballester, S., Lluch, A. and Eroles, P. (2012) The Single-Nucleotide Polymorphisms +936 C/T VEGF and -710 C/T VEGFR1 Are Associated with Breast Cancer Protection in a Spanish Population. Breast Cancer Research and Treatment, 133, 769-778.
https://doi.org/10.1007/s10549-012-1980-1
[31]  Moorhead, P.S., Nowell, P.C., Mellman, W.J., Battips, D.M. and Hungerford, D.A. (1960) Chromosome Preparations of Leukocytes from Human Peripheral Blood. Experimental Cell Research, 20, 613-616.
https://doi.org/10.1016/0014-4827(60)90138-5
[32]  ISCN (2016) An International System for Human Cytogenenomic Nomenclature. Cytogenetic and Genome Research, 149, 1-140.
[33]  Adeli, K. and Ogbonna, G. (1990) Rapid Purification of Human DNA from Whole Blood for Potential Application in Clinical Chemistry Laboratories. Clinical Chemistry, 36, 261-264.
https://doi.org/10.1093/clinchem/36.2.261
[34]  Hemminki, K. and Shields, P.G. (2002) Skilled Use of DNA Polymorphisms as a Tool for Polygenic Cancers. Carcinogenesis, 23, 379-380.
https://doi.org/10.1093/carcin/23.3.379
[35]  Cox, D.G., Deer, D., Guo, Q., Tworoger, S.S., Hankinson, S.E., Hunter, D.J. and De Vivo, I. (2007) The p53 Arg72Pro and MDM2 -309 Polymorphisms and Risk of Breast Cancer in the Nurses’ Health Studies. Cancer Causes & Control, 18, 621-625.
https://doi.org/10.1007/s10552-007-9004-x
[36]  Schmidt, M.K., Tommiska, J., Broeks, A., van Leeuwen, F.E., Van’t Veer, L.J., Pharoah, P.D., Easton, D.F., Shah, M., Humphreys, M., Dörk, T., Reincke, S.A., Fagerholm, R., Blomqvist, C. and Nevanlinna, H. (2009) Combined Effects of Single Nucleotide Polymorphisms TP53 R72P and MDM2 SNP309, and p53 Expression on Survival of Breast Cancer Patients. Breast Cancer Research, 11, R89.
https://doi.org/10.1186/bcr2460
[37]  Zhang, H., Somasundaram, K., Peng, Y., Tian, H., Zhang, H., Bi, D., Weber, B.L. and El-Deiry, W.S. (1998) BRCA1 Physically Associates with p53 and Stimulates Its Transcriptional Activity. Oncogene, 16, 1713-1721.
https://doi.org/10.1038/sj.onc.1201932
[38]  Kawai, H., Li, H., Chun, P., Avraham, S. and Avraham, H.K. (2002) Direct Interaction between BRCA1 and the Estrogen Receptor Regulates Vascular Endothelial Growth Factor (VEGF) Transcription and Secretion in Breast Cancer Cells. Oncogene, 21, 7730-7739.
https://doi.org/10.1038/sj.onc.1205971
[39]  Gorodetska, I., Kozeretska, I. and Dubrovska, A. (2019) BRCA Genes: The Role in Genome Stability, Cancer Stemness and Therapy Resistance. Journal of Cancer, 10, 2109-2127.
https://doi.org/10.7150/jca.30410
[40]  Giordano, S.H., Cohen, D.S., Buzdar, A.U., Perkins, G. and Hortobagyi, G.N. (2004) Breast Carcinoma in Men: A Population-Based Study. Cancer, 101, 51-57.
https://doi.org/10.1002/cncr.20312
[41]  Jeffy, B.D., Schultz, E.U., Selmin, O., Gudas, J.M., Bowden, G.T. and Romagnolo, D. (1999) Inhibition of BRCA-1 Expression by benzo[a]pyrene and Its Diol Epoxide. Molecular Carcinogenesis, 26, 100-118.
https://doi.org/10.1002/(SICI)1098-2744(199910)26:2<100::AID-MC5>3.0.CO;2-1
[42]  Zheng, J (2013) Oncogenic Chromosomal Translocations and Human Cancer (Review). Oncology Reports, 30, 2011-2019.
https://doi.org/10.3892/or.2013.2677
[43]  Birger, Y. and Izraeli, S. (2012) DYRK1A in Down Syndrome: An Oncogene or Tumor Suppressor? Journal of Clinical Investigation, 122, 807-810.
https://doi.org/10.1172/JCI62372
[44]  Jeandidier, E., Gervais, C., Radford-Weiss, I., Zink, E., Gangneux, C., Eischen, A., Galoisy, A.C., Helias, C., Dano, L., Cammarata, O., Jung, G., Harzallah, I., Guérin, E., Martzolff, L., Drénou, B., Lioure, B., Tancrédi, C., Rimelen, V. and Mauvieux, L. (2012) A Cytogenetic Study of 397 Consecutive Acute Myeloid Leukemia Cases Identified Three with a t(7;21) Associated with 5q Abnormalities and Exhibiting Similar Clinical and Biological Features, Suggesting a New, Rare Acute Myeloid Leukemia Entity. Cancer Genetics, 205, 365-372.
https://doi.org/10.1016/j.cancergen.2012.04.007
[45]  Hu, Q., Kwon, Y.S., Nunez, E., Cardamone, M.D., Hutt, K.R., Ohgi, K.A., Garcia-Bassets, I., Rose, D.W., Glass, C.K., Rosenfeld, M.G. and Fu, X.D. (2008) Enhancing Nuclear Receptor-Induced Transcription Requires Nuclear Motor and LSD1-Dependent Gene Net Working in Interchromatin Granules. Proceedings of the National Academy of Sciences, 105, 19199-19204.
https://doi.org/10.1073/pnas.0810634105
[46]  Kumar-Sinha, C., Tomlins, S.A. and Chinnaiyan, A.M. (2008) Recurrent Gene Fusions in Prostate Cancer. Nature Reviews Cancer, 8, 497-511.
https://doi.org/10.1038/nrc2402
[47]  Tuna, M., Knuutila, S. and Mills, G.B. (2009) Uniparental Disomy in Cancer. Trends in Molecular Medicine, 15, 120-128.
https://doi.org/10.1016/j.molmed.2009.01.005
[48]  Murthy, S.K., DiFrancesco, L.M., Ogilvie, R.T. and Demetrick, D.J. (2002) Loss of Heterozygosity Associated with Uniparental Disomy in Breast Carcinoma. Modern Pathology, 15, 1241-1250.
https://doi.org/10.1097/01.MP.0000032535.62750.D1
[49]  Richardson, A.L., Wang, Z.C., De Nicolo, A., Lu, X., Brown, M., Miron, A., Liao, X., Iglehart, J.D., Livingston, D.M. and Ganesan, S. (2006) X Chromosomal Abnormalities in Basal-Like Human Breast Cancer. Cancer Cell, 9, 121-132.
https://doi.org/10.1016/j.ccr.2006.01.013
[50]  Yamazawa, K., Ogata, T. and Ferguson-Smith, A.C. (2010) Uniparental Disomy and Human Disease: An Overview. American Journal of Medical Genetics Part C: Seminars in Medical Genetics, 154, 329-334.
https://doi.org/10.1002/ajmg.c.30270
[51]  Bremer, A., Schoumans, J., Nordenskjold, M., Anderlid, B.M. and Giacobini, M. (2009) An Interstitial Deletion of 7.1Mb in Chromosome Band 6p22.3 Associated with Developmental Delay and Dysmorphic Features Including Heart Defects, Short Neck, and Eye Abnormalities. European Journal of Medical Genetics, 52, 358-362.
https://doi.org/10.1016/j.ejmg.2009.06.002
[52]  Celestino-Soper, P.B., Skinner, C., Schroer, R., Eng, P., Shenai, J., Nowaczyk, M.M., Terespolsky, D., Cushing, D., Patel, G.S., Immken, L., Willis, A., Wiszniewska, J., Matalon, R., Rosenfeld, J.A., Stevenson, R.E., Kang, S.H., Cheung, S.W., Beaudet, A.L. and Stankiewicz, P. (2012) Deletions in Chromosome 6p22.3-p24.3, Including ATXN1, Are Associated with Developmental Delay and Autism Spectrum Disorders. Molecular Cytogenetics, 5, 17.
https://doi.org/10.1186/1755-8166-5-17
[53]  Gondek, L.P., Tiu, R., OKeefe, C.L., Sekeres, M.A., Theil, K.S. and Maciejewski, J.P. (2008) Chromosomal Lesions and Uniparental Disomy Detected by SNP Arrays in MDS,MDS/MPD, and MDS-Derived AML. Blood, 111, 1534-1542.
https://doi.org/10.1182/blood-2007-05-092304
[54]  Lo, K.C., Bailey, D., Burkhardt, T., Gardina, P., Turpaz, Y. and Cowell, J.K. (2008) Comprehensive Analysis of Loss of Heterozygosity Events in Glioblastoma Using the 100K SNP Mapping Arrays and Comparison with Copy Number Abnormalities Defined by BAC Array Comparative Genomic Hybridization. Genes Chromosomes and Cancer, 47, 221-237.
https://doi.org/10.1002/gcc.20524
[55]  Sangle, N.A., Mao, R., Shetty, S., Schiffman, J.D., Dechet, C., Layfield, L., Agarwal, N. and Liu, T. (2013) Novel Molecular Aberrations and Pathologic Findings in a Tubulocystic Variant of Renal Cell Carcinoma. Indian Journal of Pathology and Microbiology, 56, 428-433.
https://doi.org/10.4103/0377-4929.125361
[56]  Atlas of Genetics and Cytogenetics in Oncology and Haematology.
http://atlasgeneticsoncology.org
[57]  Lu, F., Qian, Y., Li, H., Dong, M., Lin, Y., Du, J., Lin, Y., Chen, J., Shen, C., Jin, G., Dai, J., Hu, Z. and Shen, H. (2012) Genetic Variants on Chromosome 6p21.1 and 6p22.3 Are Associated with Type 2 Diabetes Risk: A Case-Control Study in Han Chinese. Journal of Human Genetics, 57, 320-325.
https://doi.org/10.1038/jhg.2012.25
[58]  Weiss, J.R., Moysich, K.B. and Swede, H. (2005) Epidemiology of Male Breast Cancer. Cancer Epidemiology, Biomarkers & Prevention, 14, 20-26.
https://doi.org/10.1158/1055-9965.EPI-05-0457
[59]  Bianchi, N.O., Richard, S.M., Peltomaki, P. and Bianchi, M.S. (2002) Mosaic AZF Deletions and Susceptibility to Testicular Tumors. Mutation Research, 503, 51-62.
https://doi.org/10.1016/S0027-5107(02)00072-6
[60]  Noveski, P., Madjunkova, S., Stefanovska, E.S., Geshkovska, N.M., Kuzmanovska, M., Dimovski, A. and Plaseska-Karanfilska, D. (2016) Loss of Y Chromosome in Peripheral Blood of Colorectal and Prostate Cancer Patients. PLoS ONE, 11, e0146264.
https://doi.org/10.1371/journal.pone.0146264
[61]  Murphy, K.M., Cohen, J.S., Goodrich, A., Long, P.P. and Griffin, C.A. (2007) Constitutional Duplication of a Region of Chromosome Yp Encoding AMELY, PRKY, and TBL1Y: Implications for Sex Chromosome Analysis and Bone Marrow Engraftment Analysis. Journal of Molecular Diagnostics, 9, 408-413.
https://doi.org/10.2353/jmoldx.2007.060198
[62]  Kirsch, S., Munch, C., Jiang, Z., Cheng, Z., Chen, L., Batz, C., Eichler, E.E. and Schempp, W. (2008) Evolutionary Dynamics of Segmental Duplications from Human Y-Chromosomal Euchromatin/Heterochromatin Transition Regions. Genome Research, 18, 1030-1042.
https://doi.org/10.1101/gr.076711.108
[63]  Quintana-Murci, L. and Fellous, M. (2001) The Human Y Chromosome: The Biological Role of a “Functional Wasteland”. Journal of Biomedicine and Biotechnology, 1, 18-24.
https://doi.org/10.1155/S1110724301000080
[64]  Kido, T. and Lau, Y.F. (2015) Roles of the Y Chromosome Genes in Human Cancers. Asian Journal of Andrology, 17, 373-380.
[65]  Sauter, G., Moch, H., Wagner, U., Novotna, H., Gasser, T.C., Mattarelli, G., et al. (1995) Y Chromosome Loss Detected by FISH in Bladder Cancer. Cancer Genetics and Cytogenetics, 82, 163-169.
https://doi.org/10.1016/0165-4608(95)00030-S
[66]  de Graaff, W.E., van Echten, J., van der Veen, A.Y., Sleijfer, D.T., Timmer, A., Koops, H.S. and de Jong, B. (1999) Loss of the Y-Chromosome in the Primary Metastasis of a Male Sex Cord Stromal Tumor: Pathogenetic Implications. Cancer Genetics and Cytogenetics, 112, 21-25.
https://doi.org/10.1016/S0165-4608(98)00245-3
[67]  Center, R., Lukeis, R., Vrazas, V. and Garson, O.M. (1993) Y Chromosome Loss and Rearrangement in Non-Small-Cell Lung Cancer. International Journal of Cancer, 55, 390-393.
https://doi.org/10.1002/ijc.2910550309
[68]  Hunter, S., Gramlich, T., Abbott, K. and Varma, V. (1993) Y Chromosome Loss in Esophageal Carcinoma: An in Situ Hybridization Study. Genes Chromosomes and Cancer, 8, 172-177.
https://doi.org/10.1002/gcc.2870080306
[69]  Shi, Y.C., Cui, Y.X., Zhou, Y.C., Wei, L., Jiang, H.T., Xia, X.Y., Lu, H.Y., Wang, H.Y., Shang, X.J., Zhu, W.M., Li, X.J. and Huang, Y.F. (2011) A Rare Y Chromosome Constitutional Rearrangement: A Partial AZFb Deletion and Duplication within Chromosome Yp in an Infertile Man with Severe Oligoasthenoteratozoospermia. International Journal of Andrology, 34, 461-469.
https://doi.org/10.1111/j.1365-2605.2010.01098.x
[70]  Emanuel, B.S. and Saitta, S.C. (2007) From Microscopes to Microarrays: Dissecting Recurrent Chromosomal Rearrangements. Nature Reviews Genetics, 8, 869-883.
[71]  Panani, A.D., Babanaraki, A., Malianga, E. and Roussos, C.H. (2004) Numerical Aberrations of Chromosomes 9 and 11 Detected by FISH in Greek Bladder Cancer Patients. Anticancer Research, 24, 3857-3862.
https://doi.org/10.1038/nrg2136
[72]  Du, N., Bao, W., Zhang, K., Lu, X., Crew, R., Wang, X., Liu, G. and Wang, F. (2019) Cytogenetic Characterization of the Malignant Primitive Neuroectodermal SK-PN-DW Tumor Cell Line. BMC Cancer, 19, 412.
https://doi.org/10.1186/s12885-019-5625-1
[73]  Tsukamoto, F., Miyoshi, Y., Egawa, C., Kasugai, T., Takami, S., Inazawa, J. and Noguchi, S. (2001) Clinicopathologic Analysis of Breast Carcinoma with Chromosomal Aneusomy Detected by Fluorescence in Situ Hybridization. Cancer, 93, 165-170.
https://doi.org/10.1002/cncr.9024
[74]  Mitelman, F., Johansson, B. and Mertens, F. (2015) Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer.
https://doi.org/10.1007/978-3-319-19983-2_1

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413