全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Anti-Melanogenesis Effect of Daniellic Acid Isolated from Daniellia oliveri (Rolfe) Hutch. & Dalziel (Leguminosae) Oleoresin of Burkina Faso

DOI: 10.4236/ojmc.2021.114004, PP. 41-57

Keywords: Daniellia oliveri, Daniellic Acid, Tyrosinase, Melanogenesis, Cytotoxicity

Full-Text   Cite this paper   Add to My Lib

Abstract:

Over the past years, natural products have been used as useful candidates for prevention and treatment of skin disorders such as skin darkening. In this current research, Daniellia oliveri which was a potential source of cosmeceutical agent was selected to investigate its active components. Daniellic acid isolated from the oleoresin was characterized by using data from 1H-NMR, 13C-NMR, HSQC, IR, and online chemo-informatic analysis. The daniellic acid antioxidant, anti-proliferative, and tyrosinase inhibition capabilities were evaluated. This compound possessed an anti-DPPH and iron (III) reducing effect compared to quercetin. It was able to inhibit 9 tumor cells with IC50 going from 0.03 mM (U373) to 0.14 mM (Malme-3M). Interestingly daniellic acid inhibits tyrosinase activity with 1.20 mM as IC50. The tyrosinase inhibition mechanism was noncompetitive mixed-type with un-significant effect on cell melanogenesis. Daniellic acids induced a half-reduction of melanin production in B16F10 cell in IBMX stimulation (p < 0.05). The same observation was effective in Malme-3M melanin production with a significant daniellic acid action than kojic acid (p <

References

[1]  Lambert, M.W., Maddukuri, S., Karanfilian, K.M., Elias, M.L. and Lambert, W.C. (2019) The Physiology of Melanin Deposition in Health and Disease. Clinics in Dermatology 37, 402-417.
https://doi.org/10.1016/j.clindermatol.2019.07.013
[2]  Gauglitz, G.G, Korting, H.C., Pavicic, T., Ruzicka, T. and Jeschke, M.G. (2011) Hypertrophic Scarring and Keloids: Pathomechanisms and Current and Emerging Treatment Strategies. Molecular Medicine, 17, 113-125.
https://doi.org/10.2119/molmed.2009.00153
[3]  Yin, B., Fang, D.M., Zhou, X.L. and Gao, F. (2019) Natural Products as Important Tyrosine Kinase Inhibitors. European Journal of Medicinal Chemistry, 182, Article ID: 111664.
https://doi.org/10.1016/j.ejmech.2019.111664
[4]  Sibaud, V., Beylot-Barry, M., Protin, C., Vigarios, E., Recher, C. and Ysebaert L. (2020) Dermatological Toxicities of Bruton’s Tyrosine Kinase Inhibitors. American Journal of Clinical Dermatology, 21, 799-812.
https://doi.org/10.1007/s40257-020-00535-x
[5]  Rimassa, L., Danesi, R., Pressiani, T. and Merle, P. (2019) Management of Adverse Events Associated with Tyrosine Kinase Inhibitors: Improving Outcomes for Patients with Hepatocellular Carcinoma. Cancer Treatment Reviews, 77, 20-28.
https://doi.org/10.1016/j.ctrv.2019.05.004
[6]  Inngjerdingen, K., Nergård, C.S., Diallo, D., Mounkoro, P.P. and Paulsen, B.S. (2004) An Ethnopharmacological Survey of Plants Used for Wound Healing in Dogonland, Mali, West Africa. Journal of Ethnopharmacology, 92, 233-244.
https://doi.org/10.1016/j.jep.2004.02.021
[7]  Arbonnier, M. (2009) Arbres, arbustes et lianes des zones sèches d’Afrique de l’Ouest. Troisème Edition, MNHN & Quae, Paris, 573 p.
[8]  Atolani, O. and Olatunji, G.A. (2016) Chemical Composition, Antioxidant and Cytotoxicity Potential of Daniellia oliveri (Rolfe) Hutch. & Dalz. Turkish Journal of Pharmaceutical Sciences, 13, 41-46.
[9]  Nacoulma, O.G. (1996) Plantes médicinales et Pratiques médicales Traditionnelles au BURKINA: Cas du plateau central. Thèse d’Etat, tome 2, Univeristé de Ouagadougou, Burkina Faso.
[10]  Atolani, O. and Olatunji, G.A. (2014) Isolation and Evaluation of Antiglycation Potential of Polyalthic Acid (Furano-Terpene) from Daniella oliveri. Journal of Pharmaceutical Analysis, 4, 407-411.
https://doi.org/10.1016/j.jpha.2014.05.002
[11]  Barrero, A.F., Herrador, M.M., Arteaga, P., Arteaga, J.F. and Arteaga, A.F. (2012) Communic Acids: Occurrence, Properties and Use as Chirons for the Synthesis of Bioactive Compounds. Molecules, 17, 1448-1467.
https://doi.org/10.3390/molecules17021448
[12]  Chen, J.J., Ting, C.W., Wu, Y.C., Hwang, T.L., Cheng, M.J., Sung, P.J., et al. (2013) New Labdane-Type Diterpenoids and Anti-Inflammatory Constituents from Hedychium coronarium. International Journal of Molecular Sciences, 14, 13063-13077.
https://doi.org/10.3390/ijms140713063
[13]  Quintanilla-Licea, R., Morado-Castillo, R., Gomez-Flores, R., Laatsch, H., Verde-Star, M.J., Hernández-Martínez, H., et al. (2012) Bioassay-Guided Isolation and Identification of Cytotoxic Compounds from Gymnosperma glutinosum Leaves. Molecules, 17, 11229-11241.
https://doi.org/10.3390/molecules170911229
[14]  Lipinski, C.A., Lombardo, F., Dominy, B.W. and Feeney, P.J. (2012) Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Advanced Drug Delivery Reviews, 64, 4-17.
https://doi.org/10.1016/j.addr.2012.09.019
[15]  Nacoulma, A.P., Compaoré, M., de Lorenzi, M., Kiendrebeogo, M. and Nacoulma, O.G. (2012) In Vitro Antioxidant and Anti-Inflammatory Activities of Extracts from Nicotiana tabacum L. (Solanaceae) Leafy Galls Induced by Rhodococcus fascians. Journal of Phytopathology, 160, 617-621.
https://doi.org/10.1111/j.1439-0434.2012.01953.x
[16]  Chiang, H.M., Chien, Y.C., Wu, C.H., Kuo, Y.H., Wu, W.C., Pan, Y.Y., et al. (2014) Hydroalcoholic Extract of Rhodiola rosea L. (Crassulaceae) and Its Hydrolysate Inhibit Melanogenesis in B16F0 Cells by Regulating the CREB/MITF/Tyrosinase Pathway. Food and Chemical Toxicology, 65, 129-139.
https://doi.org/10.1016/j.fct.2013.12.032
[17]  Rhourrhi-Frih, B., West, C., Pasquier, L., André, P., Chaimbault, P. and Lafosse, M. (2012) Classification of Natural Resins by Liquid Chromatography-Mass Spectrometry and Gas Chromatography-Mass Spectrometry Using Chemometric Analysis. Journal of Chromatography A, 1256, 177-190.
https://doi.org/10.1016/j.chroma.2012.07.050
[18]  Abrão, F., Alves, J.A., Andrade, G., de Oliveira, P.F., Ambrósio, S.R., Veneziani, R.C.S., et al. (2018) Antibacterial Effect of Copaifera duckei Dwyer Oleoresin and Its Main Diterpenes against Oral Pathogens and Their Cytotoxic Effect. Front in Microbiology, 9, Article No. 201.
https://doi.org/10.3389/fmicb.2018.00201
[19]  Pfeifer Barbosa, A.L., Wenzel-Storjohann, A., Barbosa, J.D., Zidorn, C., Peifer, C., Tasdemir, D., et al. (2019) Antimicrobial and Cytotoxic Effects of the Copaifera reticulata Oleoresin and Its Main Diterpene acids. Journal of Ethnopharmacology, 233, 94-100.
https://doi.org/10.1016/j.jep.2018.11.029
[20]  Tian, S., Wang, J., Li, Y., Li, D., Xu, L. and Hou, T. (2015) The Application of in Silico Drug-Likeness Predictions in Pharmaceutical Research. Advanced Drug Delivery Review, 86, 2-10.
https://doi.org/10.1016/j.addr.2015.01.009
[21]  Tian, S., Wang, J., Li, Y., Xu, X. and Hou, T. (2012) Drug-Likeness Analysis of Traditional Chinese Medicines: Prediction of Drug-Likeness Using Machine Learning Approaches. Molecular Pharmaceutics, 9, 2875-2886.
https://doi.org/10.1021/mp300198d
[22]  Antignac, E., Nohynek, G.J., Re, T., Clouzeau, J. and Toutain, H. (2011) Safety of Botanical Ingredients in Personal Care Products/Cosmetics. Food and Chemical Toxicology, 49, 324-341.
https://doi.org/10.1016/j.fct.2010.11.022
[23]  Chang, T.S. (2009) An Updated Review of Tyrosinase Inhibitors. International Journal of Molecular Sciences, 10, 2440-2475.
https://doi.org/10.3390/ijms10062440
[24]  Kim, Y.J. and Uyama, H. (2005) Tyrosinase Inhibitors from Natural and Synthetic Sources: Structure, Inhibition Mechanism and Perspective for the Future. Cellular and Molecular Life Sciences, 62, 1707-1723.
https://doi.org/10.1007/s00018-005-5054-y
[25]  Lai, K.Y., Hu, H.C., Chiang, H.M., Liu, Y.J., Yang, J.C., Lin, Y.A., et al. (2018) New Diterpenes Leojaponins G-L from Leonurus japonicus. Fitoterapia, 130, 125-133.
https://doi.org/10.1016/j.fitote.2018.08.014
[26]  Vargas, F.D.S., De Almeida, P.D.O., Aranha, E.S.P., Boleti, A.P.D.A., Newton, P., De Vasconcellos, M.C. et al. (2015) Biological Activities and Cytotoxicity of Diterpenes from Copaifera spp. Oleoresins. Molecules, 20, 6194-6210.
https://doi.org/10.3390/molecules20046194
[27]  Ortonne, J.P. and Passeron, T. (2005) Melanin Pigmentary Disorders: Treatment Update. Dermatologic Clinics, 23, 209-226.
https://doi.org/10.1016/j.det.2005.01.001

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133