全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Graphene  2021 

DFT Study of Se-Doped Nanocones as Highly Efficient Hydrogen Storage Carrier

DOI: 10.4236/graphene.2021.104004, PP. 49-60

Keywords: CNCs, BNNCs, SiCNCs, DFT, Hydrogen Adsorption, Hydrogen Storage, Se-NCs

Full-Text   Cite this paper   Add to My Lib

Abstract:

We have investigated the high capacity of Selenium atom (Se) doped nanocones surfaces as hydrogen storage systems. Hydrogen is a clean source of energy and it is derived from diverse domestic and sustainable resources. Hence, it can use as a viable alternative to fossil fuels. Therefore, the hydrogen storage on pure and doped Se-CNCs, BNNCs and SiCNCs was studied by density functional theory (DFT) method. The obtained results show that the lowest adsorption energy and the highest surface reactivity are -31.03 eV and 39.73 Debye for Se-Si34C41H9-M1 with disclination angle 300°, respectively. Therefore, one can conclude that the doped Se-SiCNCs are good candidate for hydrogen storage. This finding was also confirmed by using the molecular orbital analysis. It is found that doping NCs with Se atom results in increasing the electron density around the Se atom and leading to increase the hydrogen storage capacity. The new understanding of highly efficient hydrogen storage for doped Se-SiCNCs, will be useful for the future synthesis of nancones with high performance for H2 energy storage.

References

[1]  Al-Khateeb, M.A. and El-Barbary, A.A. (2020) Hydrogen Adsorption Mechanism of SiC Nanocones. Graphene, 9, 1-12.
https://doi.org/10.4236/graphene.2020.91001
[2]  El-Barbary, A.A., Kamel, M.A., Eid, K.M., Taha, H.O., Mohamed, R.A. and Al-Khateeb, M.A. (2015) The Surface Reactivity of Pure and Monohydrogenated Nanocones Formed from Graphene Sheets. Graphene, 45, 75-83.
https://doi.org/10.4236/graphene.2015.44008
[3]  Iijima, S. (1991) Helical Microtubules of Graphitic Carbon. Nature, 354, 56-58.
https://doi.org/10.1038/354056a0
[4]  El-Barbary, A.A. (2019) Hydrogen Storage on Cross Stacking Nanocones. International Journal of Hydrogen Energy, 44, Article ID: 20099.
https://doi.org/10.1016/j.ijhydene.2019.05.043
[5]  Sattler, K. (1995) Scanning Tunneling Microscopy of Carbon Nanotubes and Nanocones. Carbon, 33, 915-920.
https://doi.org/10.1016/0008-6223(95)00020-E
[6]  EL-Barbary, A.A. (2018) Vacancy Cluster in Graphite: Migration Mechanism and Aggregation. AIP Conference Proceedings, 1976, Article ID: 020006.
https://doi.org/10.1063/1.5042373
[7]  Ewels, C.P., Telling, R.H., El-Barbary, A.A. and Heggie, M.I. (2003) Metastable Frenkel Pair Defect in Graphite: Source of Winger Energy. Physical Review Letters, 91, Article ID: 25505.
https://doi.org/10.1103/PhysRevLett.91.025505
[8]  EL-Barbary, A.A. (2017) New Insights into Canted Spiro Carbon Interstitial in Graphite. Applied Surface Science, 426, 238-243.
https://doi.org/10.1016/j.apsusc.2017.07.196
[9]  Alfieri, G. and Kimoto, T. (2009) The Structural and Electronic Properties of Chiral SiC Nanotubes: A Hybrid Density Functional Study. Nanotechnology, 20, Article ID: 285703.
https://doi.org/10.1088/0957-4484/20/28/285703
[10]  EL-Barbary, A.A. (2016) Hydrogenated Fullerenes in Space: FT-IR Spectra Analysis. AIP Conference Proceedings, 1742, Article ID: 030005.
https://doi.org/10.1063/1.4953126
[11]  Gali, A. (2006) Ab Initio Study of Nitrogen and Boron Substitutional Impurities in Single-Wall SiC Nanotubes. Physical Review B, 73, Article ID: 245415.
https://doi.org/10.1103/PhysRevB.73.245415
[12]  EL-Barbary, A.A. (2016) Hydrogenated Fullerenes Dimer, Peanut and Capsule: An Atomic Comparison. Applied Surface Science, 369, 50-57.
https://doi.org/10.1016/j.apsusc.2016.02.033
[13]  Nikitin, A., Li, X.L., Zhang, Z.Y., Ogasawara, H., Dai, H.J. and Nilsson, A. (2008) Hydrogen Storage in Carbon Nanotubes through the Formation of Stable C-H Bonds. Nano Letters, 8, 162-167.
https://doi.org/10.1021/nl072325k
[14]  EL-Barbary, A.A. (2016) Potential Energy of H2 inside the C116 Fullerene Dimerization: An Atomic Analysis. Journal of Molecular Structure, 1112, 9-13.
https://doi.org/10.1016/j.molstruc.2016.02.007
[15]  Zhu, J., Yu, Z., Burkhard, G.F., Hsu, C.M., Connor, S.T., Xu, Y., Wang, Q., McGehee, M., Fan, S. and Cui, Y. (2009) Optical Absorption Enhancement in Amorphous Silicon Nanowire and Nanocone Arrays. Nano Letters, 9, 279-282.
https://doi.org/10.1021/nl802886y
[16]  EL-Barbary, A.A. (2016) Hydrogenation Mechanism of Small Fullerene Cages. International Journal of Hydrogen Energy, 41, 375-383.
https://doi.org/10.1016/j.ijhydene.2015.10.102
[17]  Yang, F.H., Lachawiec, A.J. and Yang, R.T. (2006) Hydrogen Sorption on Palladium-Doped Sepiolite-Derived Carbon Nanofibers. The Journal of Physical Chemistry B, 110, 6236-6244.
https://doi.org/10.1021/jp056461u
[18]  El-Barbary, A.A., Kamel, M.A., Eid, K.M., Taha, H.O. and Hassan, M.M. (2015) Mono-Vacancy and B-Doped Defects in Carbon Heterojunction Nanodevices. Graphene, 4, 84-90.
https://doi.org/10.4236/graphene.2015.44009
[19]  Zetterling, C.M. (2002) Process Technology for Silicon Carbide Devices. IET, London.
https://doi.org/10.1049/PBEP002E
[20]  El-Barbary, A.A., Eid, K.M., Kamel, M.A., Taha, H.O. and Ismail, G.H. (2015) Adsorption of CO, CO2, NO and NO2 on Boron Nitride Nanotubes: DFT Study. Journal of Surface Engineered Materials and Advanced Technology, 5, 154-161.
https://doi.org/10.4236/jsemat.2015.53017
[21]  Wu, J.J. and Guo, G.Y. (2007) Optical Properties of SiC Nanotubes: An Ab Initio Study. Physical Review B, 76, Article ID: 035343.
https://doi.org/10.1103/PhysRevB.76.035343
[22]  El-Barbary, A.A., Eid, K.M., Kamel, M.A., Taha, H.O. and Ismail, G.H. (2015) Adsorption of CO, CO2, NO and NO2 on Carbon Boron Nitride Hetero Junction: DFT Study. Journal of Surface Engineered Materials and Advanced Technology, 5, 169-176.
https://doi.org/10.4236/jsemat.2015.54019
[23]  Harris, G.L. (1995) Properties of Silicon Carbide. INSPEC, the Institution of Electrical Engineers, London.
[24]  El-Barbary, A.A., Eid, K.M., Kamel, M.A., Taha, H.O. and Ismail, G.H. (2014) Effect of Tubular Chiralities and Diameters of Single Carbon Nanotubes on Gas Sensing Behavior: A DFT Analysis. Journal of Surface Engineered Materials and Advanced Technology, 4, 66-74.
https://doi.org/10.4236/jsemat.2014.42010
[25]  Liu, C. and Cheng, H.M. (2005) Carbon Nanotubes for Clean Energy Applications. Journal of Physics D: Applied Physics, 38, 231-252.
https://doi.org/10.1088/0022-3727/38/14/R01
[26]  El-Barbary, A.A., Ismail, G.H. and Babaier, A. (2013) Theoretical Study of Adsorbing CO, CO2, NO and NO2 on Carbon Nanotubes. Journal of Surface Engineered Materials and Advanced Technology, 3, 287-294.
https://doi.org/10.4236/jsemat.2013.34039
[27]  El-Barbary, A.A., Telling, R.H., Ewels, C.P. and Heggie, M.I. (2003) Structural and Energetics of the Vacancy in Graphite. Physical Review B, 68, Article ID: 144107.
https://doi.org/10.1103/PhysRevB.68.144107
[28]  Telling, R.H., Ewels, C.P., El-Barbary, A.A. and Heggie, M.I. (2003) Wigner Defects Bridge the Graphite Gap. Nature Materials, 2, 333-337.
https://doi.org/10.1038/nmat876
[29]  Matsunami, H. (2004) Technological Breakthroughs in Growth Control of Silicon Carbide for High Power Electronic Devices. Japanese Journal of Applied Physics, 43, 6835.
https://doi.org/10.1143/JJAP.43.6835
[30]  EL-Barbary, A.A. (2015) The Surface Reactivity and Electronic Properties of Small Hydrogenation Fullerene Cages. Journal of Surface Engineered Materials and Advanced Technology, 5, 162-168.
https://doi.org/10.4236/jsemat.2015.53018
[31]  Garberg, S.N., Naess, G., Helgesen, K.D., Knudsen, G., Kopstad, A. and Elgsaeter, A. (2008) Transmission Electron Microscopeand Electron Diraction Study of Carbon Nanodisks. Carbon, 46, 1535-1543.
https://doi.org/10.1016/j.carbon.2008.06.044
[32]  EL-Barbary, A.A. (2015) 1H and 13C NMR Chemical Shift Investigations of Hydrogenated Small Fullerene Cages Cn, CnH, CnHn and CnHn+1: n = 20, 40, 58, 60. Journal of Molecular Structure, 1097, 76-86.
https://doi.org/10.1016/j.molstruc.2015.05.015
[33]  Mavrandonakis, A., Froudakis, G.E., Andriotis, A. and Menon, M. (2006) Silicon Carbide Nanotube Tips: Promising Materials for Atomic Force Microscopy and/or Scanning Tunneling Microscopy. Physical Review Letters, 89, Article ID: 123126.
https://doi.org/10.1063/1.2221418
[34]  Hindi, A.A. and EL-Barbary, A.A. (2015) Hydrogen Storage on Halogenated C40 Cage: An Intermediate between Physisorption and Chemisorptions. Journal of Molecular Structure, 1080, 169-175.
https://doi.org/10.1016/j.molstruc.2014.09.034
[35]  El-Barbary, A.A., Lebda, H.I. and Kamel, M.A. (2009) The High Conductivity of Defect Fullerene C40 Cage. Computational Materials Science, 46, 128-132.
https://doi.org/10.1016/j.commatsci.2009.02.034
[36]  Berry, G.D. and Aceves, S.M. (1998) Onboard Storage Alternatives for Hydrogen Vehicles. Energy Fuels, 12, 49-55.
https://doi.org/10.1021/ef9700947
[37]  Chen, P., Wu, X., Lin, J. and Tan, K.L. (1999) High H2 Uptake by Alkali-Doped Carbon Nano Tubes under Ambient Pressure and Moderate Temperatures. Science, 285, 91-93.
https://doi.org/10.1126/science.285.5424.91
[38]  Strobel, R., Garche, J., Moseley, P.T., Jorissen, L. and Wolf, G. (2006) Hydrogen Storage by Carbon Materials. Journal of Power Sources, 159, 781-801.
https://doi.org/10.1016/j.jpowsour.2006.03.047
[39]  Baughman, R.H., Zakhidov, A.A. and De Heer, W.A. (2002) Carbon Nanotubes— The Route toward Applications. Science, 297, 787-792.
https://doi.org/10.1126/science.1060928
[40]  Yang, F.H. and Yang, R.T. (2002) Adsorption Behaviors of HiPco Single-Walled Carbon Nanotube Aggregates for Alcohol Vapors. The Journal of Physical Chemistry, 106, 8994-8999.
https://doi.org/10.1021/jp025767n
[41]  Zhao, Y., Kim, Y.H., Dillon, A.C., Heben, M.J. and Zhang, S.B. (2005) Ab Initio Design of Ca-Decorated Organic Frameworks for High Capacity Molecular Hydrogen Storage with Enhanced Binding. Physical Review Letters, 95, Article ID: 033109.
[42]  El-Nahass, M.M., Kamel, M.A., El-Barbary, A.A., El-Mansy, M.A.M. and Ibrahim, M. (2013) On the Spectroscopic Analyses of Thioindigo Dye. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 113, 332-336.
https://doi.org/10.1016/j.saa.2013.05.014
[43]  Kotz, J.C., Treichel, P. and Weaver, G.C. (2006) Chemistry and Chemical Reactivity. Thomson Brooks Cole, Pacific Grove.
[44]  Shalabi, A.S., Eid, Kh.M., Kamel, M.A. and El-Barbary, A.A. (1998) Comparative Study of Errors in HeH ¯ Interaction Energy Calculations. International Journal of Quantum Chemistry, 68, 329.
https://doi.org/10.1002/(SICI)1097-461X(1998)68:5<329::AID-QUA4>3.0.CO;2-X
[45]  Shalabi, A.S., Eid, Kh.M., Kamel, M.A. and El-Barbary, A.A. (1998) Potential Energy Curves of H and H ¯ Interactions with He. Physics Letters A, 239, 87-93.
https://doi.org/10.1016/S0375-9601(97)00938-9
[46]  Savini, G., El Barbary, A.A., Heggie, M.I. and Őberg, S. (2007) Partial Dislocations under Forward Bias in SiC. Materials Science Forum, 556, 279-282.
https://doi.org/10.4028/www.scientific.net/MSF.556-557.279
[47]  Suarez-Martinez, El Barbary, A.A., Savini, G. and Heggie, M.I. (2007) First-Principles Simulations of Boron Diffusion in Graphite. Physical Review Letters, 98, Article ID: 015501.
https://doi.org/10.1103/PhysRevLett.98.015501
[48]  Becke, A.D. (1993) Density-Functional Thermochemistry. III. The Role of Exact Exchange. Chemical Physics, 98, 5648.
https://doi.org/10.1063/1.464913
[49]  Vosko, S.H., Wilk, L., Nusair, M. and Can, J. (1980) Influence of an Improved Local-Spin-Density Correlation-Energy Functional on the Cohesive Energy of Alkali Metals. Physical Review B, 22, 3812-3815.
https://doi.org/10.1103/PhysRevB.22.3812
[50]  Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrzewski, V.G., Montgomery, J.A., Stratmann, R.E., Burant, J.C., Dapprich, S., Millam, J.M., Daniels, A.D., Kudin, K.N., Strain, M.C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G.A., Ayala, P.Y., Cui, Q., Morokuma, K., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Cioslowski, J., Ortiz, J.V., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R.L., Fox, D.J., Keith, T., Al-Lamham, M., Peng, C.Y., Nanayakkara, A., Gonzalez, C., Challacombe, M., Gill, P.M.W., Johnson, B.G., Chen, W., Wong, M.W., Andres, J.L., Head-Gordon, M., Replogle, E.S. and Pople, J.A. (2004) Gaussian 2004. Gaussian Inc., Wallingford.
[51]  Frisch, A., Dennington, R.D., Keith, T.A., Millam, J., Nielsen, A.B., Holder, A.J. and Hiscocks, J. (2003) Gauss View Manual Version 4. Gaussian Inc., Wallingford.
[52]  Alshareef, B. (2020) DFT Investigation of the Hydrogen Adsorption on Graphene and Graphene Sheet Doped with Osmium and Tungsten. Open Journal of Physical Chemistry, 10, 197-204.
https://doi.org/10.4236/ojpc.2020.104012

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413