全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Effects of Oxidation States and Spin States of Chromium Interaction with Sargassum Sp.: A Spectroscopic and Density Functional Theoretical Study

DOI: 10.4236/gsc.2021.114011, PP. 125-141

Keywords: Transition Metal, Time Dependent Density Functional Theory, Binding Energy, Spectroscopy, Electronic Properties and Homoleptic Coordinated Complex

Full-Text   Cite this paper   Add to My Lib

Abstract:

The study of various oxidation states of chromium with Sargassum sp. is of particular interest since hexavalent chromium is reduced to trivalent chromium in an aqueous solution. In this study, a systematic density functional theory (DFT) calculations were performed to study the interactions of transition metal chromium ion with different oxidation states and spin states with the Sargassum sp. decorated with carboxylate (acetate) at the wB97XD/6-311++ G(d,p) level of theory. The structures and binding energies of chromium metal-carboxylate complexes at various oxidation states and spin states in gas phase were examined. The coordination strength of Cr(VI) with the acetate ligand was predominantly the strongest compared to the other oxidation states. Vibrational frequency analysis, for the homoleptic monomers of tris [CrIII(AC)3]0 and [CrVI(AC)3]3+ complexes, illustrate good harmony with the experimental and theoretical calculated frequencies. Using the time-dependent DFT (TD-DFT) at the level of CAM-B3LYP/6-311++G(d,p), the vertical excitation energies were obtained. The stabilization energies derived using the second order perturbation

References

[1]  Shupack, S.I. (1991) The Chemistry of Chromium and Some Resulting Analytical Problems. Environmental Health Perspectives, 92, 7-11.
https://doi.org/10.1289/ehp.91927
[2]  Campbell, J.A. and Whiteker, R.A. (1969) A Periodic Table Based on Potential-pH Diagrams. Journal of Chemical Education, 46, 90-92.
https://doi.org/10.1021/ed046p90
[3]  Mitewa, M. and Bontchev, P. (1985) Chromium (V) Coordination Chemistry. Co-Ordination Chemistry Reviews, 61, 241-272.
https://doi.org/10.1016/0010-8545(85)80006-0
[4]  Dittert, I.M., Vilar, V.J.P., da Silva, E.A.B., de Souza, S.M.A.G.U., de Souza, A.A.U., Botelho, C.M.S. and Boaventura, R.A.R. (2012) Adding Value to Marine Macro-Algae Laminaria digitata through Its Use in the Separation and Recovery of Trivalent Chromium Ions from Aqueous Solution. Chemical Engineering Journal, 193-194, 348-357.
https://doi.org/10.1016/j.cej.2012.04.048
[5]  Zheng, Y.-M., Liu, T., Jiang, J., Yang, L., Fan, Y., Wee, A.T.S. and Chen, J.P. (2011) Characterization of Hexavalent Chromium Interaction with Sargassum by X-Ray Absorption Fine Structure Spectroscopy, X-Ray Photoelectron Spectroscopy, and Quantum Chemistry Calculation. Journal of Colloid and Interface Science, 356, 741-748.
https://doi.org/10.1016/j.jcis.2010.12.070
[6]  Mehandzhiyski, A.Y., Riccardi, E., van Erp, T.S., Koch, H., Åstrand, P.-O., Trinh, T.T. and Grimes, B.A. (2015) Density Functional Theory Study on the Interactions of Metal Ions with Long Chain Deprotonated Carboxylic Acids. Journal of Physical Chemistry A, 119, 10195-10203.
https://doi.org/10.1021/acs.jpca.5b04136
[7]  Turowski, P.N., Bino, A. and Lippard, S.J. (1990) μ-Hydroxobis(μ-forma-to)hexaaquadichromium(III), an Intermediate in the Formation of Basic Chromium Carboxylates. Angewandte Chemie International Edition English, 29, 811-812.
https://doi.org/10.1002/anie.199008111
[8]  Ellis, T., Glass, M., Harton, A., Folting, K., Huffman, J.C. and Vincent, J.B. (1994) Synthetic Models for Low-Molecular-Weight Chromium-Binding Substance: Synthesis and Characterization of Oxo-Bridged Tetranuclear Chromium(III) Assemblies. Inorganic Chemistry, 33, 5522-5527.
https://doi.org/10.1021/ic00102a028
[9]  Eshel, M., Bino, A., Felner, I., Johnston, D.C., Luban, M. and Miller, L.L. (2000) Poly-Nuclear Chromium (III) Carboxylates. 1. Synthesis, Structure, and Magnetic Properties of an Octanuclear Complex with a Ring Structure. Inorganic Chemistry, 39, 1376-1380.
https://doi.org/10.1021/ic9907009
[10]  Blann, K., Bollmann, A., de Bod, H., Dixon, J.T., Killian, E., Nongodlwana, P., Maumela, M.C., Maumela, H., McConnell, A.E., Morgan, D.H., Overett, M.J., Prétorius, M., Kuhlmann, S. and Wasserscheid, P. (2007) Ethylene Tetramerisation: Subtle Effects Exhibited by N-Substituted Diphosphinoamine Ligands. Journal of Catalysis, 249, 244-249.
https://doi.org/10.1016/j.jcat.2007.04.009
[11]  Rao, C.N.R., Natarajan, S. and Vaidhyanathan, R. (2004) Metal Carboxylates with Open Architectures. Angewandte Chemie International Edition English, 43, 1466-1496.
https://doi.org/10.1002/anie.200300588
[12]  Warner, A. (1908) ZurTheorie der Beizenfarbstoffe. Berichte der Deutschen Chemischen Gesellschaft, 41, 2383-2386.
https://doi.org/10.1002/cber.190804102149
[13]  Kambe, K. (1950) On the Paramagnetic Susceptibilities of Some Polynuclear Complex Salts. Journal of Physical Society Japan, 5, 48-51.
https://doi.org/10.1143/JPSJ.5.48
[14]  Erre, L.S., Micera, G., Glowiak, T. and Kozlowski, H. (1997) Chromium(III) Acetate, Chromium(III) Acetate Hydroxide, or μ3-Oxo-esakis-(μ2-acetato-O,O’) Tria-quatrichromium(III) Acetate? Determining the Structure of a Complex Compound by Analytical and Spectroscopic Methods. Journal of Chemical Education, 74, 432.
https://doi.org/10.1021/ed074p432
[15]  Kapoor, R. and Sharma, R. (1983) Anhydrous Chromium(III) Carboxylates: Reactions of CrO3 with Carboxylic Acid Anhydrides. Zeitschrift für Naturforschung, 38, 42.
https://doi.org/10.1515/znb-1983-0110
[16]  Sydora, O.L., Hart, R.T., Eckert, N.A., Martinez Baez, E., Clark, A.E. and Benmore, C.J. (2018) A Homoleptic Chromium(III) Carboxylate. Dalton Transactions, 47, 4790-4793.
https://doi.org/10.1039/C8DT00029H
[17]  Matin, M.A., Mazharul, M.I., Bredow, T. and Aziz, M.A. (2017) The Effects of Oxidation States, Spin States and Solvents on Molecular Structure, Stability and Spectroscopic Properties of Fe-Catechol Complexes: A Theoretical Study. Advances in Chemical Engineering and Science, 7, 137-153.
https://doi.org/10.4236/aces.2017.72011
[18]  Foster, J.P. and Weinhold, F. (1980) Natural Hybrid Orbitals. Journal American Chemical Society, 102, 7211-7218.
https://doi.org/10.1021/ja00544a007
[19]  Reed, A.E. and Weinhold, F. (1983) Natural Bond Orbital Analysis of Near-Hartree-Fock Water Dimer. Journal of Chemical Physics, 78, 4066-4073.
https://doi.org/10.1063/1.445134
[20]  Pearson, R.G. (1993) The Principle of Maximum Hardness. Accounts of Chemical Research, 26, 250-255.
https://doi.org/10.1021/ar00029a004
[21]  Pearson, R.G. (1992) The Electronic Chemical Potential and Chemical Hardness. Journal of Molecular Structure: THEOCHEM, 255, 261-270.
https://doi.org/10.1016/0166-1280(92)85014-C
[22]  Parr, R.G., Szentpály, L.V. and Liu, S. (1999) Electrophilicity Index. Journal of American Chemical Society, 121, 1922-1924.
https://doi.org/10.1021/ja983494x
[23]  Chai, J.-D. and Head-Gordon, M. (2008) Long-Range Corrected Hybrid Density Functionals with Damped Atom-Atom Dispersion Corrections. Physical Chemistry Chemical Physics, 10, 6615-6620.
https://doi.org/10.1039/b810189b
[24]  Rassolov, V.A., Pople, J.A., Ratner, M.A. and Windus, T.L. (1998) 6-31G* Basis Set for Atoms K through Zn. Journal of Chemical Physics, 109, 1223-1229.
https://doi.org/10.1063/1.476673
[25]  Ditchfield, R., Hehre, W.J. and Pople, J.A. (1971) Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules. Journal of Chemical Physics, 54, 724-728.
https://doi.org/10.1063/1.1674902
[26]  Hehre, W.J., Ditchfield, R. and Pople, J.A. (1972) Self-Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. Journal of Chemical Physics, 56, 2257-2261.
https://doi.org/10.1063/1.1677527
[27]  Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Petersson, G.A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A.V., Bloino, J., Janesko, B.G., Gomperts, R., Mennucci, B., Hratchian, H.P., Ortiz, J.V., Izmaylov, A.F., Sonnenberg, J.L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V.G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Thros-sell, K., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M.J., Heyd, J.J., Brothers, E.N., Kudin, K.N., Staroverov, V.N., Keith, T.A., Kobayashi, R., Normand, J., Raghavacha-ri, K., Rendell, A.P., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Millam, J.M., Klene, M., Adamo, C., Cammi, R., Ochterski, J.W., Martin, R.L., Morokuma, K., Farkas, O., Foresman, J.B. and Fox, D.J. (2016) Gaussian 16, Revision B.01. Gaussian, Inc., Wallingford.
[28]  Matin, M.A., Chitumalla, R.K., Lim, M., Gao, X. and Jang, J. (2015) Density Functional Theory Study on the Cross-Linking of Mussel Adhesive Proteins. Journal of Physical Chemistry B, 119, 5496-5504.
https://doi.org/10.1021/acs.jpcb.5b01152
[29]  Spellmeyer, D.C. (2005) Annual Reports in Computational Chemistry. Elsevier, Amsterdam.
[30]  Yanai, T., Tew, D.P. and Handy, N.C. (2004) A New Hybrid Exchange-Correlation Functional Using the Coulomb-Attenuating Method (CAM-B3LYP). Chemical Physics Letters, 393, 51-57.
https://doi.org/10.1016/j.cplett.2004.06.011
[31]  Sutton, C.C.R., da Silva, G. and Franks, G.V. (2015) Modeling the IR Spectra of Aqueous Metal Carboxylate Complexes: Correlation between Bonding Geometry and Stretching Mode Wavenumber Shifts. Chemistry—A European Journal, 21, 6801-6805.
https://doi.org/10.1002/chem.201406516
[32]  Deacon, G.B. and Phillips, R.J. (1980) Relationships between the Carbon-Oxygen Stretching Frequencies of Carboxylato Complexes and the Type of Carboxylate Coordination. Coordination Chemistry Reviews, 33, 227-250.
https://doi.org/10.1016/S0010-8545(00)80455-5
[33]  Hsu, L.-Y. and Nordman, C.E. (1983) Structures of Two Forms of Sodium Acetate, Na+C2H3O2-. Acta Crystallographica Section C, 39, 690-694.
https://doi.org/10.1107/S0108270183005946
[34]  Boys, S.F. and Bernardi, F. (1970) The Calculation of Small Molecular Interactions by the Differences of Separate Total Energies. Some Procedures with Reduced Errors. Molecular Physics, 19, 553-566.
https://doi.org/10.1080/00268977000101561
[35]  Barone, V. and Cossi, M. (1998) Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model. Journal of Physical Chemistry A, 102, 1995-2001.
https://doi.org/10.1021/jp9716997
[36]  Cossi, M., Rega, N., Scalmani, G. and Barone, V. (2003) Energies, Structures, and Electronic Properties of Molecules in Solution with the C-PCM Solvation Model. Journal Computational Chemistry, 24, 669-681.
https://doi.org/10.1002/jcc.10189
[37]  Tomasi, J., Mennucci, B. and Cammi, R. (2005) Quantum Mechanical Continuum Solvation Models. Chemical Review, 105, 2999-3094.
https://doi.org/10.1021/cr9904009
[38]  Quintelas, C., Rocha, Z., Silva, B., Fonseca, B., Figueiredo, H. and Tavares, T. (2009) Removal of Cd(II), Cr(VI), Fe(III) and Ni(II) from Aqueous Solutions by an E. coli Bio-Film Supported on Kaolin. Chemical Engineering Journal, 149, 319-324.
https://doi.org/10.1016/j.cej.2008.11.025
[39]  Aksoy and Özer, M.S.U. (2003) Potentiometric and Spectroscopic Studies with Chromium(III) Complexes of Hydroxysalicylic Acid Derivatives in Aqueous Solution. Turkish Journal Chemistry, 27, 667-673.
[40]  Valencia-Centeno, Y., Ureña-Núñez, F., Sánchez-Mendieta, V., Morales-Luckie, R.A., López-Castañares, R. and Huerta, L. (2008) Synthesis and Structural Characterization of Tris(methacrylato)chromium(III). Journal of Coordination Chemistry, 61, 1589-1598.
https://doi.org/10.1080/00958970701599611
[41]  Reed, A.E., Weinstock, R.B. and Weinhold, F. (1985) Natural Population Analysis. Journal of Chemical Physics, 83, 735-746.
https://doi.org/10.1063/1.449486
[42]  Singh, U.C. and Kollman, P.A. (1984) An Approach to Computing Electrostatic Charges for Molecules. Journal of Computational Chemistry, 5, 129-145.
https://doi.org/10.1002/jcc.540050204
[43]  Breneman, C.M. and Wiberg, K.B. (1990) Determining Atom-Centered Monopoles from Molecular Electrostatic Potentials. The Need for High Sampling Density in Formamide Conformational Analysis, Journal of Computational Chemistry, 11, 361-373.
https://doi.org/10.1002/jcc.540110311
[44]  Chirlian, L.E. and Francl, M.M. (1987) Atomic Charges Derived from Electrostatic Potentials: A Detailed Study. Journal of Computational Chemistry, 8, 894-905.
https://doi.org/10.1002/jcc.540080616
[45]  Hu, H., Lu, Z. and Yang, W. (2007) Fitting Molecular Electrostatic Potentials from Quantum Mechanical Calculations. Journal of Chemical Theory and Computation, 3, 1004-1013.
https://doi.org/10.1021/ct600295n
[46]  Reed, A.E., Curtiss, L.A. and Weinhold, F. (1988) Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint. Chemical Review, 88, 899-926.
https://doi.org/10.1021/cr00088a005

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413