全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Simulation of the Hydrodynamic Functioning of the Cavally River Using a Coupled 1D-2D Model in the Ity Area (Zouan-Hounien in C?te d’Ivoire)

DOI: 10.4236/ojmh.2021.114005, PP. 75-84

Keywords: Ity Mines, 1D-2D Modeling, Flooding, Cavally River, Côte d’Ivoire

Full-Text   Cite this paper   Add to My Lib

Abstract:

In recent years, the Cavally River has been subject to multiple activities, including the construction of diversion channels and a bridge that makes it vulnerable to flooding. In order to assess the impact of these hydraulic structures on the river hydrodynamic functioning, a 1D-2D model was realized. The implementation of the 1D-2D model consisted of first running the 1D model, then the 2D model, and finally in coupling them. The 1D-2D model was designed with the 1988 flood hydrograph, a Manning’s coefficient of 0.052 m1/3/s for the minor bed and 0.06 m1/3/s for the major bed. The results of the hydraulic model show that the velocities are almost identical to those of the Cavally in natural operation. The values of the velocities are included between 0.4 m/s and 1.3 m/s at the level of the minor bed of the river and between 0.06 m/s and 0.71 m/s at the level of the floodplains. The average water level for flood propagation is 262.37 ± 0.44 m before construction of the structures and 262.23 ± 0.85 m after construction of the structures. The 0.41 m reduction in water level due to the diversion canal and bridge is negligible compared to the total fluctuations of the Cavally River, which vary from 6 to 7 m over the year.

References

[1]  Loudière, D. and Gourbesville, P. (2020) Rapport mondial des Nations Unies sur la mise en valeur des ressources en eau 2020: L’eau et les changements climatiques. La Houille Blanche, 106, 76-81.
https://doi.org/10.1051/lhb/2020024
[2]  Baron, C. (2010) L’eau en Afrique: disponibilité et accès. Futuribles, Paris, 33-55.
https://doi.org/10.1051/futur/35933
[3]  Brou, Y.T., Akindès, F. and Bigot, S. (2005) La variabilité climatique en Côte d’Ivoire: Entre perceptions sociales et réponses agricoles. Cahiers Agricultures, 14, 533-540.
[4]  Nadège, B.K.A.N., Cissé, G., Koné, B. and Séri, D. (2016) Variabilite climatique et changements dans l’environnement a Korhogo en Cote d’Ivoire: Mythes ou realite? European Scientific Journal, 12, 158.
https://doi.org/10.19044/esj.2016.v12n5p158
[5]  Chen, W.-B. and Liu, W.-C. (2017) Modeling the Influence of River Cross-Section Data on a River Stage Using a Two-Dimensional/Three-Dimensional Hydrodynamic Model. Water, 9, 203.
https://doi.org/10.3390/w9030203
[6]  Séraphin, K.K., Lazare, K.K., Félix, K.K., Sylvestre, Y.A. and Alexis, B.L. (2020) Impacts de l’orpaillage sur la morphologie et la qualité des eaux du fleuve Cavally (Zouan-hounien, Côte d’Ivoire). International Journal of Innovation and Applied Studies, 28, 515-524.
http://www.issr-journals.org/links/papers.php?journal=ijias&application
=pdf&article=IJIAS-19-306-01
[7]  Lazare, K.K., Alexis, B.L., Berthe, Y.A., Alex, K.Z., Séraphin, K.K., Félix, K.K. and Bérenger, K. (2019) 1D-2D Hydraulic Modeling of a Diversion Channel on the Cavally River in Zouan-Hounien, Cote d’Ivoire. Journal of Water Resource and Protection, 11, 1036.
https://doi.org/10.4236/jwarp.2019.118061
[8]  Girard, G. and Sircoulon, J. (1968) Aperçu sur les régimes hydrologiques de Côte d’Ivoire. 1-61.
[9]  Tricart, J. (1973) Une monographie physique de la Côte-d’Ivoire. Annales de Géographie, 82, 369-372.
[10]  Brou, L.A. (2019) Modélisation de la Dynamique Hydrologique du Fleuve Cavally sous l’Influence de fortes Pressions Anthropiques dans la Zone de Zouan-Hounien (Côte d’Ivoire). Ph.D. Thesis, Université Jean Lorougnon Guédé, Côte d’Ivoire.
[11]  Ettien, D. (2010) Exploitation industrielle des gisements d’or et dynamique spatiale du terroir d’Ity dans l’Ouest de la Côte d’Ivoire, Une étude à base de la télédétection. Revue de Géographie du Laboratoire Leïdi, 8, 1-15.
[12]  Hec, O. and Hec-Ras, H. (2013) Concepts de base de la modelisation hydrologique et hydraulique.
https://pdf.usaid.gov/pdf_docs/PA00K1HG.pdf
[13]  McCuen, R.H., Knight, Z. and Cutter, A.G. (2006) Evaluation of the Nash-Sutcliffe Efficiency Index. Journal of Hydrologic Engineering, 11, 597-602.
https://doi.org/10.1061/(ASCE)1084-0699(2006)11:6(597)
[14]  Chai, T. and Draxler, R.R. (2014) Root Mean Square Error (RMSE) or Mean Absolute Error (MAE)?—Arguments against Avoiding RMSE in the Literature. Geoscientific Model Development, 7, 1247-1250.
https://doi.org/10.5194/gmd-7-1247-2014
[15]  Anoh, K.A., Konan, K.S., Eblin, S.G., Atcho, A.V. and Kouassi, K.L. (2021) Contribution of Agro-Hydrological Modeling in the Evaluation of Water Availability of an Ungauged Basin Reservoir in Côte d’Ivoire: Case of the Loka Reservoir in Bouaké. Computational Water, Energy, and Environmental Engineering, 10, 117-130.
https://doi.org/10.4236/cweee.2021.103009
[16]  Kane, S., Sambou, S., Leye, I., Diedhiou, R., Tamba, S., Cisse, M.T., Ndione, D.M. and Sane, M.L. (2017) Modeling of Unsteady Flow through Junction in Rectangular Channels: Impact of Model Junction in the Downstream Channel Hydrograph. Computational Water, Energy, and Environmental Engineering, 6, 304-319.
https://doi.org/10.4236/cweee.2017.63020
[17]  Göktaş, R.K., Ayvaz, M.T., Kargı, P.G., Erdoğan, E.K., Mesta, B., Tezyapar, İ. and Tezel, U. (2018) Effect of Land Surface Elevation Data Availability on River Hydraulic Model Output. European Geosciences Union General Assembly, 20, EGU2018-14885.
[18]  Mah, D.Y.S., Lai, S.H., Chan, R.A.R.B. and Putuhena, F.J. (2012) Investigative Modelling of the Flood Bypass Channel in Kuching, Sarawak, by Assessing Its Impact on the Inundations of Kuching-Batu Kawa-Bau Expressway. Structure and Infrastructure Engineering, 8, 705-714.
https://doi.org/10.1080/15732471003770167
[19]  Kim, C. and Kang, J. (2013) Case Study: Hydraulic Model Study for Abandoned Channel Restoration. Engineering, 5, 989-996.
https://doi.org/10.4236/eng.2013.512120
[20]  Campisano, A., Cutore, P. and Modica, C. (2014) Improving the Evaluation of Slit-Check Dam Trapping Efficiency by Using a 1D Unsteady Flow Numerical Model. Journal of Hydraulic Engineering, 140, Article ID: 04014024.
https://doi.org/10.1061/(ASCE)HY.1943-7900.0000868

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413