全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Steroidal Plant Growth Promoters vs. Phytopathogens, via Enzymatic Regulation; An in Silico Approach

DOI: 10.4236/aer.2021.94006, PP. 55-71

Keywords: 22-Oxocholestanes, Brassinosteroids, Chitinase B, 1,3-β-Glucanase, ARV4, ECP6

Full-Text   Cite this paper   Add to My Lib

Abstract:

Steroidal plant growth promoters (SPGP) have been continuously studied due to their high activity increasing biomass and resistance to diverse stress factors. In our hands, a new SPGP family of 22-oxocholestanic compounds stands out at a comparative level to brassinosteroids (BSs). The potential activity of new SPGP against phytopathogens was studied through in silico molecular docking, these assays were performed with relevant ensymes of phytopatogens Chitinase B and 1,3-β-Glucanase. Nine Chitinase B inhibitors and two 1,3-β-Glucanase inhibitors were proposed. The launched study analyzed the interactional and spatial level, determining the presence of interactions with key amino acids in receptors in comparison to reference inhibitors. Even more, the AVR4 and ECP6 effectors were also examined. No compound that blocks ECP6 was found; due to, probably, the influence of its highly hydrophilic environment. In the case of AVR4, two SPGP showed a better docking score (DS) than a chitin fragment (endogenous ligand); this fact demonstrates the latent potential of the 22-oxocholestanic derivatives against phytopathogens, with a specific regulation via proliferation inhibition. Moreover, this SPGP does not affect the symbiotic fungi that are beneficial for the natural plant system.

References

[1]  Wang, S.Q., Zhao, H.H., Zhao, L.M., Gu, C.M., Na, Y.G., Xie, B., Cheng, S.H. and Pan, G.J. (2020) Application of Brassinolide Alleviates Cold Stress at the Booting Stage of Rice. Journal of Integrative Agriculture, 19, 975-987.
https://doi.org/10.1016/S2095-3119(19)62639-0
[2]  Hussain, M.A., Fahad, S., Sharif, R., Jan, M.F., Mujtaba, M., Ali, Q., Ahmad, A., Ahmad, H., Amin, N., Ajayo, B.S., Sun, C., Gu, L., Ahmad, I., Jiang, Z. and Hou, J. (2020) Multifunctional Role of Brassinosteroid and Its Analogues in Plants. Plant Growth Regulation, 92, 141-156.
https://doi.org/10.1007/s10725-020-00647-8
[3]  Hafeez, M.B., Zahra, N., Zahra, K., Raza, A., Khan, A., Shaukat, K. and Khan, S. (2021) Brassinosteroids: Molecular and Physiological Responses in Plant Growth and Abiotic Stresses. Plant Stress, 2, Article ID: 100029.
https://doi.org/10.1016/j.stress.2021.100029
[4]  Jia, J., Zhang, Y. and Feng, H. (2019) Effects of Brassinolide on Microspore Embryogenesis and Plantlet Regeneration in Pakchoi (Brassica rapa var. multiceps). Scientia Horticulturae, 252, 354-362.
https://doi.org/10.1016/j.scienta.2019.04.004
[5]  Peng, J., Tang, X. and Feng, H. (2004) Effects of Brassinolide on the Physiological Properties of Litchi Pericarp (Litchi chinensis cv. Nuomoci). Scientia Horticulturae, 101, 407-416.
https://doi.org/10.1016/j.scienta.2003.11.012
[6]  Doležalová, J., Koudela, M., Sus, J. and Ptá ček, V. (2016) Effects of Synthetic Brassinolide on the Yield of Onion Grown at Two Irrigation Levels. Scientia Horticulturae, 202, 125-132.
https://doi.org/10.1016/j.scienta.2016.02.023
[7]  Vázquez, M.N., Guerrero, Y.R., González, L.M. and de la Noval, W.T. (2013) Brassinosteroids and Plant Responses to Heavy Metal Stress. An Overview. Open Journal of Metal, 3, 34-41.
https://doi.org/10.4236/ojmetal.2013.32A1005
[8]  Yadava, P., Kaushal, J., Gautam, A., Parmar, H. and Singh, I. (2016) Physiological and Biochemical Effects of 24-Epibrassinolide on Heat-Stress Adaptation in Maize (Zea mays L.). Natural Sciences, 8, 171-179.
https://doi.org/10.4236/ns.2016.84020
[9]  Zeferino-Diaz, R., Hilario-Martinez, J.C., Rodriguez-Acosta, M., Carrasco-Carballo, A., Hernandez-Linares, M.G., Sandoval-Ramirez, J. and Fernandez-Herrera, M.A. (2017) Mimicking Natural Phytohormones. 26-Hydroxycholestan-22-One Derivatives as Plant Growth Promoters. Steroids, 125, 20-26.
https://doi.org/10.1016/j.steroids.2017.06.004
[10]  Zeferino-Diaz, R., Hilario-Martinez, J.C., Rodriguez-Acosta, M., Sandoval-Ramirez, J. and Fernandez-Herrera, M.A. (2015) 22-Oxocholestanes as Plant Growth Promoters. Steroids, 98, 126-131.
https://doi.org/10.1016/j.steroids.2015.03.005
[11]  Hilario-Martínez, J.C., Zeferino-Díaz, R., Muñoz-Hernández, M.A., Hernández-Linares, M.G., Cabellos, J.L., Merino, G., Sandoval-Ramírez, J., Jin, Z. and Fernández-Herrera, M.A. (2016) Regioselective Spirostan E-Ring Opening for the Synthesis of Dihydropyran Steroidal Frameworks. Organic Letters, 18, 1772-1775.
https://doi.org/10.1021/acs.orglett.6b00492
[12]  Balasubramanian, V., Vashisht, D., Cletus, J. and Sakthivel, N. (2012) Plant β-1,3-Glucanases: Their Biological Functions and Transgenic Expression against Phytopathogenic Fungi. Biotechnology Letters, 34, 1983-1990.
https://doi.org/10.1007/s10529-012-1012-6
[13]  Ojito-Ramos, K. and Orelvis, P. (2010) Introducción al sistema inmune en plantas. Biotecnologia Vegetal, 10, 3-19.
https://revista.ibp.co.cu/index.php/BV/article/view/266
[14]  Hawkesford, M.J. and Buchner, P. (2001) Molecular Analysis of Plant Adaptation to the Environment. Kluwer Academic Publishers, Dordrecht.
https://doi.org/10.1007/978-94-015-9783-8
[15]  Heath, M.C. (2000) Nonhost Resistance and Nonspecific Plant Defenses. Current Opinion in Plant Biology, 3, 315-319.
https://doi.org/10.1016/S1369-5266(00)00087-X
[16]  Shewry, P.R. and Lucas, J.A. (1997) Plant Proteins that Confer Resistance to Pests and Pathogens. Advances in Botanical Research, 26, 135-170, A170, B170, C170, D170, 171-192.
https://doi.org/10.1016/S0065-2296(08)60120-2
[17]  Lo Presti, L., Lanver, D., Schweizer, G., Tanaka, S., Liang, L., Tollot, M., Zuccaro, A., Reissmann, S. and Kahmann, R. (2015) Fungal Effectors and Plant Susceptibility. Annual Review of Plant Biology, 66, 513-545.
https://doi.org/10.1146/annurev-arplant-043014-114623
[18]  Bolton, M.D., Van Esse, H.P., Vossen, J.H., De Jonge, R., Stergiopoulos, I., Stulemeijer, I.J.E., Van Den Berg, G.C.M., Borrás-Hidalgo, O., Dekker, H.L., De Koster, C.G., De Wit, P.J.G.M., Joosten, M.H.A.J. and Thomma, B.P.H.J. (2008) The Novel Cladosporium fulvum Lysin Motif Effector Ecp6 is a Virulence Factor with Orthologues in Other Fungal Species. Molecular Microbiology, 69, 119-136.
https://doi.org/10.1111/j.1365-2958.2008.06270.x
[19]  Gupta, P., Ravi, I. and Sharma, V. (2013) Induction of β-1,3-Glucanase and Chitinase Activity in the Defense Response of Eruca sativa Plants against the Fungal Pathogen Alternaria brassicicola. Journal of Plant Interactions, 8, 155-161.
https://doi.org/10.1080/17429145.2012.679705
[20]  Zhao, J., Wang, J., An, L., Doerge, R.W., Chen, Z.J., Grau, C.R., Meng, J. and Osborn, T.C. (2007) Analysis of Gene Expression Profiles in Response to Sclerotinia sclerotiorum in Brassica napus. Planta, 227, 13-24.
https://doi.org/10.1007/s00425-007-0586-z
[21]  Shrestha, C.L., Oña, I., Muthukrishnan, S. and Mew, T.W. (2008) Chitinase Levels in Rice Cultivars Correlate with Resistance to the Sheath Blight Pathogen Rhizoctonia solani. European Journal of Plant Pathology, 120, 69-77.
https://doi.org/10.1007/s10658-007-9199-4
[22]  Salim, A.P., Saminaidu, K., Marimuthu, M., Perumal, Y., Rethinasamy, V., Palanisami, J.R. and Vadivel, K. (2011) Defense Responses in Tomato Landrace and Wild Genotypes to Early Blight Pathogen Alternaria solani Infection and Accumulation of Pathogenesisrelated Proteins. Archives of Phytopathology and Plant Protection, 44, 1147-1164.
https://doi.org/10.1080/03235408.2010.482763
[23]  Wu, G.W., Gao, J.M., Shi, X.W., Zhang, Q., Wei, S.P. and Ding, K. (2011) Microbial Transformations of Diosgenin by the White-Rot Basidiomycete Coriolus versicolor. Journal of Natural Products, 74, 2095-2101.
https://doi.org/10.1021/np2003484
[24]  Sánchez-Rangel, D., Sánchez-Nieto, S. and Plasencia, J. (2012) Fumonisin B1, a Toxin Produced by Fusarium verticillioides, Modulates Maize β-1,3-Glucanase Activities Involved in Defense Response. Planta, 235, 965-978.
https://doi.org/10.1007/s00425-011-1555-0
[25]  Kuo, H.W., Zeng, J.K., Wang, P.H. and Chen, W.C. (2015) A Novel Exo-Glucanase Explored from a Meyerozyma sp. Fungal Strain. Advances in Enzyme Research, 3, 53-65.
https://doi.org/10.4236/aer.2015.33006
[26]  Chisholm, S.T., Coaker, G., Day, B. and Staskawicz, B.J. (2006) Host-Microbe Interactions: Shaping the Evolution of the Plant Immune Response. Cell, 124, 803-814.
https://doi.org/10.1016/j.cell.2006.02.008
[27]  Patrick, W.M., Nakatani, Y., Cutfield, S.M., Sharpe, M.L., Ramsay, R.J. and Cutfield, J.F. (2010) Carbohydrate Binding Sites in Candida albicans Exo-β-1,3-Glucanase and the Role of the Phe-Phe ‘Clamp’ at the Active Site Entrance. The FEBS Journal, 277, 4549-4561.
https://doi.org/10.1111/j.1742-4658.2010.07869.x
[28]  Jiang, P.T. and Yuan, X. (2021) Structure of Serratia marcescens Chitinase B Complexed with Compound 6q.
https://www.rcsb.org/structure/7CB1
https://doi.org/10.2210/pdb7cb1/pdb
[29]  Hurlburt, N.K., Chen, L.H., Stergiopoulos, I. and Fisher, A.J. (2018) Structure of the Cladosporium fulvum Avr4 Effector in Complex with (GlcNAc)6 Reveals the Ligand-Binding Mechanism and Uncouples Its Intrinsic Function from Recognition by the Cf-4 Resistance Protein. PLoS Pathogens, 14, e1007263.
https://doi.org/10.1371/journal.ppat.1007263
[30]  Sánchez-Vallet, A., Saleem-Batcha, R., Kombrink, A., Hansen, G., Valkenburg, D.J., Thomma, B.P.H.J. and Mesters, J.R. (2013) Fungal Effector Ecp6 Outcompetes Host Immune Receptor for Chitin Binding through Intrachain LysM Dimerization. eLife, 2, e00790.
https://doi.org/10.7554/eLife.00790.013
[31]  Madhavi Sastry, G., Adzhigirey, M., Day, T., Annabhimoju, R. and Sherman, W. (2013) Protein and Ligand Preparation: Parameters, Protocols, and Influence on Virtual Screening Enrichments. Journal of Computer-Aided Molecular Design, 27, 221-234.
https://doi.org/10.1007/s10822-013-9644-8
[32]  Schrödinger Release 2021-3: Protein Preparation Wizard; Epik, Schrödinger, LLC, New York, NY, 2021; Impact, Schrödinger, LLC, New York, NY; Prime, Schrödinger, LLC, New York, NY.
[33]  Lu, C., Wu, C., Ghoreishi, D., Chen, W., Wang, L., Damm, W., Ross, G.A., Dahlgren, M.K., Russell, E., Von Bargen, C.D., Abel, R., Friesner, R.A. and Harder, E.D. (2021) OPLS4: Improving Force Field Accuracy on Challenging Regimes of Chemical Space. Journal of Chemical Theory and Computation, 17, 4291-4300.
https://doi.org/10.1021/acs.jctc.1c00302
[34]  Schrödinger Release 2021-3: LigPrep, Schrödinger, LLC, New York, NY.
[35]  Friesner, R.A., Murphy, R.B., Repasky, M.P., Frye, L.L., Greenwood, J.R., Halgren, T.A., Sanschagrin, P.C. and Mainz, D.T. (2006) Extra Precision Glide: Docking and Scoring Incorporating a Model of Hydrophobic Enclosure for Protein-Ligand Complexes. Journal of Medicinal Chemistry, 49, 6177-6196.
https://doi.org/10.1021/jm051256o
[36]  Schrödinger Release 2021-3: Glide, Schrödinger, LLC, New York, NY.
[37]  Moreno-Castillo, E., Ramírez-Echemendía, D.P., Hernández-Campoalegre, G., Mesa-Tejeda, D., Coll-Manchado, F. and Coll-García, Y. (2018) In Silico Identification of New Potentially Active Brassinosteroid Analogues. Steroids, 138, 35-42.
https://doi.org/10.1016/j.steroids.2018.06.009
[38]  Wang, Y., Liu, M., Wang, X., Zhong, L., Shi, G., Xu, Y., Li, Y., Li, R., Huang, Y., Ye, X., Li, Z. and Cui, Z. (2021) A Novel β-1,3-Glucanase Gns6 from Rice Possesses Antifungal Activity against Magnaporthe oryzae. Journal of Plant Physiology, 265, Article ID: 153493.
https://doi.org/10.1016/j.jplph.2021.153493
[39]  Xu, X., Song, Z., Yin, Y., Zhong, F., Song, J., Huang, J., Ye, W. and Wang, P. (2020) Virtual Screening of Inhibitors for Chitosanases EAG1. Advances in Enzyme Research, 8, 49-57.
https://doi.org/10.4236/aer.2020.84005

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133