全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

深紫外全固态激光器的研究进展
Research Progress of Deep Ultraviolet All-Solid Laser

DOI: 10.12677/OE.2021.114021, PP. 179-189

Keywords: 激光,紫外激光,深紫外激光,全固态激光器,增益介质,非线性晶体
Laser
, Ultraviolet Laser, Deep Ultraviolet Laser, All-Solid-State Laser, Gain Medium, Nonlinear Crystal

Full-Text   Cite this paper   Add to My Lib

Abstract:

深紫外全固态激光器指输出波长小于230 nm的固体激光器,属于不可见光,光子能量大,是深紫外前沿研究的核心光源,全固态深紫外激光器由于其具有体积小、线宽窄、可靠性较高等优点,因此应用在光发射光谱、拉曼光谱、精密微加工等领域。实现深紫外激光输出的方法有和频、倍频两种。相对与倍频技术来说,和频较复杂,稳定性差,其应用条件比较苛刻,但可以实现更短的波长;通过非线性晶体的多次谐波转换实现全固态深紫外激光输出是发展全固态深紫外激光源的有效途径,但是会受非线性晶体在深紫外区域透过率和相位匹配条件的限制。本文综述了深紫外全固态激光源的发展历史、研究现状及应用。此外,还总结了增益介质、倍频晶体等实现深紫外激光的关键技术,讨论了国内外关键的固态深紫外激光技术,为紫外激光器的研究提供了参考。
Deep ultraviolet solid-state laser refers to solid state laser with its wavelength less than 230 nm, which belongs to the invisible light and its photon energy is large. Solid-state deep ultraviolet la-ser has wide application in optical emission spectrum, Raman spectrum, micro-processing for its small volume, line width, and high reliability. Deep ultraviolet laser output can be acquired by sum frequency or second harmonic generation. Compared to multiple harmonic conversion, though sum frequency technology has harsh application conditions due to its complexity and poor stability, it can produce shorter deep ultraviolet laser. It is an effective way to develop an all-solid-state deep ultraviolet laser source to multiple harmonic conversion though nonlinear crystals, but it is limited by the transmittance and phase matching conditions of nonlinear crystals in the deep ultraviolet region. In this paper, we have reviewed the development history, research status and application fields of deep ultraviolet all solid-state laser sources. In addition, the technical background and development trend of gain medium, frequency-doubling crystal and deep ultraviolet laser are summarized as well. Finally, the key technologies of solid state deep ultraviolet laser at home and abroad are discussed, which provides a reference for the research of ultraviolet laser.

References

[1]  Banerjee, S, Mason, P.D., Ertel, K., et al. (2016) 100J-Level Nanosecond Pulsed Diode Pumped Solid State Laser. Optics Letters, 41, 2089-2092.
https://doi.org/10.1364/OL.41.002089
[2]  苏艳丽. LD泵浦全固态213 nm深紫外激光器的研究[D]: [硕士学位论文]. 济南: 山东师范大学, 2006.
[3]  Xu, Z.Y., Zhang, S.J., Zhou, X.J., et al. (2019) Advances in Deep Ultraviolet Laser Based High-Resolution Photo Emission Spectroscopy. Frontiers of Information Technology & Electronic Engineering, 20, 885-913.
https://doi.org/10.1631/FITEE.1800744
[4]  冯哲川, 田明, 张乃霁, 等. 宽禁带半导体的深紫外拉曼光谱学研究[C]//中国物理学会光散射专业委员会. 第二十届全国光散射学术会议(CNCLS 20)论文摘要集. 2019.
[5]  许祖彦. 探索深紫外的神秘世界[J]. 紫光阁, 2016, 33(01): 83-84.
[6]  Lu, H., Xu, H., Zhao, J., et al. (2020) A Deep Ultraviolet Mode-Locked Laser Based on a Neural Network. Scientific Reports, 10, Article No. 116.
https://doi.org/10.1038/s41598-019-56845-6
[7]  郑俊娟, 秘国江, 王旭, 等. 193 nm深紫外固体激光技术探索[J]. 激光与红外, 2010, 40(10): 1068-1070.
[8]  Niemi, K., der Gathen, V.S. and D?bele, H.F. (2001) Absolute Calibration of Atomic Density Measurements by Laser-Induced Fluorescence Spectroscopy with Two-Photon Excitation. Journal of Physics D: Applied Physics, 34, 2330-2335.
https://doi.org/10.1088/0022-3727/34/15/312
[9]  Wysong, I.J., Jeffries, J.B., Crosley, D.R., et al. (1989) Laser-Induced Fluorescence of O, O2, and NO near 226 nm: Photolytic Interferences and Simultaneous Excitation in Flames. Optics Letters, 14, 767-769.
https://doi.org/10.1364/OL.14.000767
[10]  Mason, P., Divoky, M., Butcher, T., et al. (2017) Commissioning of a kW-Class Nanosecond Pulsed DPSSL Operating at 105 J, 10 Hz. High-Power, High-Energy, & High-Intensity Laser Technology III, Prague, 11 May 2017, 102380H.
https://doi.org/10.1117/12.2270399
[11]  Dai, S.B., Zong, N., Yang, F., et al. (2015) 167.75-nm Vacuum-Ultraviolet ps Laser by Eighth-Harmonic Generation of a 1342-nm Nd: YVO4 Amplifier in KBBF. Optics Letters, 40, 3268-3271.
https://doi.org/10.1364/OL.40.003268
[12]  Dai, S.B., Ming, C., Zhang, S.J., et al. (2016) 2.14 mW Deep-Ultraviolet Laser at 165 nm by Eighth-Harmonic Generation of a 1319 nm Nd:YAG Laser in KBBF. Laser Physics Letters, 13, Article ID: 035401.
https://doi.org/10.1088/1612-2011/13/3/035401
[13]  刘旭超, 成洪玲, 王志敏, 彭钦军, 许祖彦. 光学端面泵浦碱金属铷蒸汽激光器获得693 W峰值功率输出(英文) [J]. 红外与激光工程, 2020, 49(S1): 12-18.
[14]  Li, J.J., Zhang, F.F., Wang, Z.M., et al. (2018) High-Energy Single-Frequency 167 nm Deep-Ultraviolet Laser. Optics Letters, 43, 2563-2566.
https://doi.org/10.1364/OL.43.002563
[15]  Yang, F., Wang, Z., Zhou, Y., et al. (2009) Theoretical and Experimental Investigations of Nanosecond 177.3 nm Deep-Ultraviolet Light by Second Harmonic Generation in KBBF. Applied Physics B, 96, 415-422.
https://doi.org/10.1007/s00340-009-3506-z
[16]  Scholz, M., Opalevs, D., Leisching, P., et al. (2012) 1.3-mW Tunable and Narrow-Band Continuous-Wave Light Source at 191 nm. Optics Express, 20, 18659-18664.
https://doi.org/10.1364/OE.20.018659
[17]  Scholz, M., Opalevs, D., Leisching, P., et al. (2013) A Bright Conti-nuous-Wave Laser Source at 193 nm. Applied Physics Letters, 103, Article ID: 051114.
https://doi.org/10.1063/1.4817786
[18]  Eismann, U., Scholz, M., Paasch-Colberg, T., et al. (2016) Short, Shorter, Shortest: Diode Lasers in the Deep Ultraviolet. Laser Focus World, 52, 39-44.
[19]  Chen, C.T., Wang, Y.B., You, N., et al. (1995) New Development of Nonlinear Optical Crystals for the Ultraviolet Region with Molecular Engineering Approach. Journal of Applied Physics, 77, 2268-2272.
https://doi.org/10.1063/1.358814
[20]  Tang, D., Xia, Y., Wu, B., et al. (2001) Growth of a New UV Nonlinear Optical Crystal: Kbe2(BO3)F2. Journal of Crystal Growth, 222, 125-129.
https://doi.org/10.1016/S0022-0248(00)00850-2
[21]  Kanai, T., Wang, X., Adachi, S., et al. (2009) Watt-Level Tunable Deep Ultraviolet Light Source by a KBBF Prism- Coupled Device. Optics Express, 17, 8696-8703.
https://doi.org/10.1364/OE.17.008696
[22]  Opalevs, D., Scholz, M., Gilfert, C., et al. (2018) Semiconductor-Based Narrow-Line and High-Brilliance 193-nm Laser System for Industrial Applications. Solid State Lasers XXVII: Technology & Devices, San Francisco, 15 February 2018, 105112C.
https://doi.org/10.1117/12.2290288
[23]  Xuan, H.W., Zhao, Z.G., Hironori, I., et al. (2015) 300-mW Narrow-Linewidth Deep-Ultraviolet Light Generation at 193 nm by Frequency Mixing between Yb-Hybrid and Er-Fiber Lasers. Optics Express, 23, 10564-10572.
https://doi.org/10.1364/OE.23.010564
[24]  Xuan, H., Chen, Q., Zhao, Z., et al. (2017) 1 W Solid-State 193 nm Coherent Light by Sum-Frequency Generation. Optics Express, 25, 29172-29179.
https://doi.org/10.1364/OE.25.029172
[25]  Xuan, H., Qu, C., Ito, S., et al. (2017) High Power, and High Conversion Efficiency Deep Ultraviolet (DUV) Laser at 258 nm Generation in the CsLiB6O10 (CLBO) Crystal with a Beam Quality of M2<1.5. Optics Letters, 42, 3133-3136.
https://doi.org/10.1364/OL.42.003133
[26]  Zhao, Z., Xuan, H., Igarashi, H., et al. (2015) Single Frequency, 5 ns, 200 μJ, 1553 nm Fiber Laser Using Silica Based Er-Doped Fiber. Optics Express, 23, 29764-29771.
https://doi.org/10.1364/OE.23.029764
[27]  Xuan, H., Zhao, Z., Igarashi, H., et al. (2014) Development of Nar-row-Linewidth Yb- and Er-Fiber Lasers and Frequency Mixing for ArF Excimer Laser Seeding. Fiber Lasers XI: Technology, Systems, and Applications, San Francisco, 12 March 2014, 89612M.
https://doi.org/10.1117/12.2038318
[28]  Zhao, Z., Qu, C., Hironori, I., et al. (2018) Watt-Level 193 nm Source Generation Based on Compact Collinear Cascaded Sum Frequency Mixing Configuration. Optics Express, 26, 19435-19444.
https://doi.org/10.1364/OE.26.019435
[29]  Bykov, S.V., Mao, M., Gares, K.L., et al. (2015) Compact Solid-State 213 nm Laser Enables Standoff Deep Ultraviolet Raman Spectrometer: Measurements of Nitrate Photochemistry. Applied Spectroscopy, 69, 895-901.
https://doi.org/10.1366/15-07960
[30]  Chu, Y., Zhang, X., Chen, B., et al. (2021) Picosecond High-Power 213-nm Deep-Ultraviolet Laser Generation Using β-BaB2O4 Crystal. Optics & Laser Technology, 134, Article ID: 106657.
https://doi.org/10.1016/j.optlastec.2020.106657
[31]  苏鑫, 姚吉, 王禹凝, 等. 皮秒光纤-固体混合放大紫外激光器[J]. 光学精密工程, 2020, 28(10): 2122-2128.
[32]  窦微, 浦双双, 牛娜, 等. 双波长二极管合束端面抽运掺镨氟化钇锂单纵模360 nm紫外激光器[J]. 物理学报, 2019, 68(5): 125-133.
[33]  李斌, 孙冰, 苗银萍. 锁波长914 nm半导体激光器共振抽运Nd:YVO4/LBO声光调Q绿光激光器[J]. 中国激光, 2019, 46(10): 54-58.
[34]  张昕, 杨军, 吴国锋, 鞠涛, 李沼云. LD泵浦全固态紫外激光器[J]. 光通信技术, 2011, 35(7): 7-10.
[35]  孔庆鑫, 任怀瑾, 鲁燕华, 王卫民. 全固态紫外激光器研究进展[J]. 光通信技术, 2017, 41(5): 34-37.
[36]  罗塞雨. Pr:YLF和Pr,Gd:CaF_2激光特性研究[D]:[博士学位论文]. 厦门: 厦门大学, 2017.
[37]  Luo, S., Cai, Z., Sheng, C., et al. (2020) 604-nm High-Order Vortex Beams Directly Generated from a Pr:YLF Laser with a Cavity-Loss-Induced Gain Switching Mechanism. Optics & Laser Technology, 127, Article ID: 106185.
https://doi.org/10.1016/j.optlastec.2020.106185
[38]  赵智刚, 关晨, 丛振华, 等. 翠绿宝石固体激光器研究进展(特邀) [J]. 光子学报, 2020, 49(11): 77-105.
[39]  陈晴, 浦双双, 牛娜, 等. 双波长蓝光LD抽运Pr:YLF晶体倍频261 nm 激光器[J]. 红外与激光程, 2020, 49(S1): 7-11.
[40]  Li, Y.J., Zong, N., Dai, S.B., et al. (2019) Experimental and Theoretical Investigations on High Power Vacuum-Ultra- violet Laser at 165 nm by Eighth-Harmonic Generation in KBBF. Optics & Laser Technology, 120, Article ID: 105756.
https://doi.org/10.1016/j.optlastec.2019.105756

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133