全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于数字全息显微的高分辨成像方法的研究
Study on the High-Resolution Imaging Method Based on Digital Holographic Microscopy

DOI: 10.12677/OE.2021.114018, PP. 151-157

Keywords: 小孔,数字全息,分辨率
Small Aperture
, Digital Holography, Resolution

Full-Text   Cite this paper   Add to My Lib

Abstract:

远场成像分辨率是数字全息显微技术应用于测量微纳米几何量的重要技术参数。高分辨成像对提高全息技术性能具有重要意义。本文分析了小孔结构在提高高频光收集效率、校正像差方面的优势,证明小孔结构具有提高成像分辨率的作用。通过在传统透射式数字全息光路中加入小孔结构,构成高分辨数字全息系统,对标准分辨率板进行实验。实验结果表明,成像弥散斑减小,成像分辨率突破衍射极限,得到提升,为实现数字全息的高分辨测量提供一种技术方法。
The resolution of far-field imaging is an important technical parameter of digital holographic microscopy, when it is applied to the measurement of micro-nano geometry. High resolution imaging plays an important role in improving the performance of holographic technology. In this paper, the advantages of the small aperture structure in improving the efficiency of high-frequency light collection and correcting aberration are analyzed, and it is proved that the small aperture structure can improve the imaging resolution. In this paper, a high resolution digital holographic system is constructed by adding small aperture structure into the traditional transmission digital holographic optical path. The experimental results show that the imaging diffusion spot decreases and the imaging resolution breaks through the diffraction limit, which provides a technical method for realizing the high-resolution measurement of digital holography.

References

[1]  Khandpur, R.S. (2019) Microscope, Near-Field Scanning Optical. John Wiley & Sons, Ltd.
[2]  Wagner, E., et al. (2012) Stimulated Emission Depletion Live-Cell Super-Resolution Imaging Shows Proliferative Remodeling of T-Tubule Membrane Structures after Myocardial Infarction. Circulation Research, 111, 402-414.
https://doi.org/10.1161/CIRCRESAHA.112.274530
[3]  Rittweger, E., Han, K.Y., Irvine, S.E., et al. (2009) STED Microscopy Reveals Crystal Colour Centres with Nanometric Resolution. Nature Photonics, 3, 144-147.
https://doi.org/10.1038/nphoton.2009.2
[4]  Prakash, K., Diederich, B., Reichelt, S., et al. (2021) Super-Resolution Structured Illumination Microscopy: Past, Present and Future. The Royal Society, 379.
https://doi.org/10.1098/rsta.2020.0143
[5]  Kozgunova, E. and Goshima, G. (2019) A Versatile Microfluidic Device for Highly Inclined Thin Illumination Microscopy in the Moss Physcomitrella Patens. Scientific Reports, 9, 15182-15182.
https://doi.org/10.1038/s41598-019-51624-9
[6]  Tokunaga, M., Imamoto, N. and Sakata-Sogawa, K. (2008) Highly Inclined Thin Illumination Enables Clear Single- Molecule Imaging in Cells. Nature Methods, 5, 159.
https://doi.org/10.1038/nmeth1171
[7]  Hao, X., Liu, X., Kuang, C., et al. (2013) Far-Field Super-Resolution Imaging Using Near-Field Illumination by Micro-Fiber. Applied Physics Letters, 102, 013104.
https://doi.org/10.1063/1.4773572
[8]  Liu, Z., Durant, S., Lee, H., et al. (2007) Far-Field Optical Superlens. Nano Letters, 7, 403.
https://doi.org/10.1021/nl062635n
[9]  Cheng, L., Cao, P.F., Meng, Q.Q., et al. (2011) Semi-Cylindrical Hyperlens Made of Al/MgO for 20nm Lithography Node. Advanced Materials Research, 179-180, 1047-1052.
https://doi.org/10.4028/www.scientific.net/AMR.179-180.1047
[10]  Lee, S. and Li, L. (2015) Rapid Super-Resolution Imaging of Sub-Surface Nanostructures beyond Diffraction Limit by High Refractive Index Microsphere Optical Nanoscopy. Optics Communications, 334, 253-257.
https://doi.org/10.1016/j.optcom.2014.08.048
[11]  赵泽宇, 张肇宁, 黄振立. 超分辨定位成像中的像差表征和校正[J]. 光学学报, 2017(3): 36-43.
[12]  Wong-Campos, J.D., Johnson, K.G., Neyenhuis, B., et al. (2016) High-Resolution Adaptive Imaging of a Single Atom. Nature Photonics, 10, 606-610.
https://doi.org/10.1038/nphoton.2016.136

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133