Bell-state experiments with pairs of polarization-entangled photons are interpreted without any hinge on non-local mechanisms. The presented model rests on a careful analysis of published experimental findings. These foundations are implemented into a standard quantum mechanical treatment that obeys the purely local nature of each polarization preparation in the course of a measurement process. Polarization entanglement is ascribed to the generation of indiscernible photon pairs while undistorted propagation maintains this interrelation. Thus, the proposed approach assigns the essential characteristics of polarization entanglement to each constituent of an entangled pair. Accordingly, space-time separated polarization preparations lead to consistent probabilities of joint detection events. The obtained results agree with those of previous non-local models and thus reproduce the experimentally required violations of the Bell inequality. Since the presented approach lacks any non-local phenomenon, hidden variables are rendered superfluous, too.
References
[1]
Einstein, A., Podolsky, Yu. and Rosen, N. (1935) Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Physical Review, 47, 777.
https://doi.org/10.1103/PhysRev.47.777
[2]
Bell, J.S. (1964) On the Einstein Podolsky Rosen Paradox. Physics Physique, 1, 195-290. https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
[3]
Leggett, A.J. (2003) Nonlocal Hidden-Variable Theories and Quantum Mechanics: An Incompatibility Theorem. Foundations of Physics, 33, 1469-1493.
https://doi.org/10.1023/A:1026096313729
[4]
Weihs, G., Jennewein, T., Simon, C., Weinfurter, H. and Zeilinger, A. (1998) Violation of Bell’s Inequality under Strict Einstein Locality Conditions. Physical Review Letters, 81, 5039. https://doi.org/10.1103/PhysRevLett.81.5039
[5]
Berkovitz, J. (2016) Action at a Distance in Quantum Mechanics. In: Zalta, E.N., Ed., The Stanford Encyclopedia of Philosophy, Spring 2016 Edition, Metaphysics Research Lab, Stanford University, Stanford, 1-107.
https://plato.stanford.edu/archives/spr2016/entries/qm-action-distance
[6]
Fine, A. (2020) The Einstein-Podolsky-Rosen Argument in Quantum Theory. In: Zalta, E.N., Ed., The Stanford Encyclopedia of Philosophy, Summer 2020 Edition, Metaphysics Research Lab, Stanford University, Stanford, 1-41.
https://plato.stanford.edu/archives/sum2020/entries/qt-epr
[7]
Myrvold, W., Genovese, M. and Shimony, A. (2021) Bell’s Theorem. In: Zalta, E.N., Ed., The Stanford Encyclopedia of Philosophy, Fall 2021 Edition, Metaphysics Research Lab, Stanford University, Stanford, 1-80.
https://plato.stanford.edu/archives/fall2021/entries/bell-theorem
[8]
Schrödinger, E. (1936) Probability Relations between Separated Systems. Mathematical Proceedings of the Cambridge Philosophical Society, 32, 446-452.
https://doi.org/10.1017/S0305004100019137
[9]
Griffiths, R.B. (2020) Nonlocality Claims Are Inconsistent with Hilbert-Space Quantum Mechanics. Physical Review A, 101, Article ID: 022117.
https://doi.org/10.1103/PhysRevA.101.022117
[10]
Jung, K. (2020) Polarization Correlation of Entangled Photons Derived without Using Non-Local Interactions. Frontiers in Physics, 8, Article No. 170.
https://doi.org/10.3389/fphy.2020.00170
[11]
Hess, K. (2018) Bell’s Theorem and Instantaneous Influences at a Distance. Journal of Modern Physics, 9, 1573-1590. https://doi.org/10.4236/jmp.2018.98099
[12]
Weihs, G. (1999) Ein Experiment zum Test der Bell’schen Ungleichung unter Einstein’scher Lokalität, Ph.D. Thesis, Universität Wien, Wien.
https://www.univie.ac.at/qfp/publications/thesis
[13]
French, S. (2019) Identity and Individuality in Quantum Theory, The Stanford Encyclopedia of Philosophy, Zalta, E. N. ed., The Stanford Encyclopedia of Philosophy, Winter 2019 Edition, Metaphysics Research Lab, Stanford University, 1-39.
https://plato.stanford.edu/archives/win2019/entries/qt-idind,
[14]
Feynman, R., Leighton, R. and Sands, M. (2010) The Feynman Lectures on Physics Vol. III, Millennium Edition. Basic Books, New York.
[15]
Tikochinsky, Y. (1988) Feynman Rules for Probability Amplitudes. International Journal of Theoretical Physics, 27, 543-549. https://doi.org/10.1007/BF00668836
[16]
Bell, J.S. and Aspect, A. (2004) Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9780511815676