全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种大周期新型漏波天线设计
The Leaky-Wave Antenna with Big Period

DOI: 10.12677/JA.2021.104005, PP. 35-43

Keywords: 主模一致,大周期,电尺寸,设计自由度
Consistent Fundamental Mode
, Big Period, Larger Electric Size, Design Freedom

Full-Text   Cite this paper   Add to My Lib

Abstract:

传统周期漏波天线所支持的工作波长与周期间距相比拟,天线设计自由度很有限。基于主模一致性,本文提出一种大周期漏波天线,其基本周期由三个不同的物理单元通过中线一致的原则排列组成,通过设计调整天线尺寸使三个周期单元的波数相同,一致的主模保证了每个单元对电磁波相位延迟相同,这使天线的工作波长仅为物理周期间距的三分之一,因此该天线展示出更大的电尺寸。另一方面,由于单元结构及排列具有较高的设计自由度,天线更易于集成在表面路径复杂的共形系统中。最后制作并测试了天线实物,实测结果表明该天线工作在6.4 GHz到9.55 GHz频率范围内,实测S11在工作频段内基本都小于?10 dB,最大增益为14.1 dBi。测试结果与仿真结果相一致,证实了该设计的有效性。
The operating wavelength of the traditional periodic leaky-wave antenna is comparable to its period, and the design freedom of the antenna configuration is very limited. Based on the consistency of the fundamental mode, this paper proposes a leaky-wave antenna with a big period, which is com-posed of three different physical elements arranged according to the principle of consistent midline. The antenna size is designed so that the wave numbers of the three periodic units are the same. The consistent fundamental mode ensures that each element has the same phase delay to the electromagnetic wave, which makes the operating wavelength of the antenna only one-third of its physical period, consequently, the antenna exhibits a larger electrical size. On the other hand, since the basic elements feature high design freedom, the antenna is easily integrated with a conformal system with complicated surface paths. Finally, the prototype is fabricated and tested, in the measurement, the operating frequency changes from 6.4 to 9.55 GHz, and the measured S11 is basically less than ?10 dB, the maximum gain is 14.1 dBi. Close agreements between the simulations and measurements are obtained, validating the effectiveness of the design.

References

[1]  Oliner, A.A. and Lee, K.S. (1986) Microstrip Leaky Wave Strip Antennas. 1986 Antennas and Propagation Society In-ternational Symposium, Philadelphia, 8-13 June 1986, 443-446.
https://doi.org/10.1109/APS.1986.1149629
[2]  Jackson, D.R., Caloz, C. and Itoh, T. (2012) Leaky Wave Anten-nas. Proceedings of the IEEE, 100, 2194-2206.
https://doi.org/10.1109/JPROC.2012.2187410
[3]  Rudramuni, K., Majumder, B. and Kandasamy, K. (2020) Du-al-Band Dual-Polarized Leaky-Wave Structure with Forward and Backward Beam Scanning for Circular Polariza-tion-Flexible Antenna Application. Microwave and Optical Technology Letters, 62, 2075-2084.
https://doi.org/10.1002/mop.32285
[4]  Ranjan, R. and Ghosh, J. (2019) SIW Based Leaky-Wave Antenna Sup-porting Wide Range of Beam Scanning through Broadside. IEEE Antennas and Wireless Propagation Letters, 18, 606-610.
https://doi.org/10.1109/LAWP.2019.2897836
[5]  Shaw, R. and Mandal, M.K. (2019) Broadside Scanning Asymmetric SIW LWA with Consistent Gain and Reduced Sidelobe. IEEE Transactions on Antennas and Propagation, 67, 823-833.
https://doi.org/10.1109/TAP.2018.2882685
[6]  Sarkar, A., Pham, D.A. and Lim, S. (2020) Tunable Higher Order Modes based Dual-Beam CRLH Microstrip Leaky-WaveAntenna for V-band Back-ward-Broadside-Forward Radiation Coverage. IEEE Transactions on Antennas and Propagation, 68, 6912-6922.
https://doi.org/10.1109/TAP.2020.2995300
[7]  Karmokar, D.K., Chen, S.-L., Bird, T.S. and Guo, Y.J. (2019) Single-Layer Multi-Via Loaded CRLH LeakyWave Antennas for Wide-Angle Beam Scanning with Consistent Gain. IEEE Antennas and Wireless Propagation Letters, 18, 313-317.
https://doi.org/10.1109/LAWP.2018.2889869
[8]  Sengupta, S., Jackson, D.R., Almutawa, A.T., Kazemi, H., Capolino, F. and Long, S.A. (2020) A Cross-Shaped 2D Periodic Leaky-Wave Antenna. IEEE Transactions on Anten-nas and Propagation, 68, 1289-1301.
https://doi.org/10.1109/TAP.2019.2948524
[9]  Sengupta, S., Jackson, D.R. and Long, S.A. (2018) Modal Anal-ysis and Propagation Characteristics of Leaky Waves on a 2-D Periodic Leaky-Wave Antenna. IEEE Transactions on Microwave Theory and Techniques, 66, 1181-1191.
https://doi.org/10.1109/TMTT.2017.2783373
[10]  Comite, D., Kuznetcov, M., Podilchak, S.K., Baccarelli, P. and Galli, A. (2021) Directive 2-D Beam Steering by Means of a Multiport Radially Periodic Leaky-Wave Antenna. IEEE Transactions on Antennas and Propagation, 69, 2494-2506.
https://doi.org/10.1109/TAP.2020.3030994
[11]  Rahimi, M.R., Sharawi, M.S. and Wu, K. (2021) Stop-Band Ra-diation Properties of Higher-Order Space Harmonics-Enabled Broadside Multi-Beam Leaky-Wave Antenna. 15th Euro-pean Conference on Antenna and Propagation, Dusseldorf, 22-26 March 2021, 1-3.
https://doi.org/10.23919/EuCAP51087.2021.9411335
[12]  Kumar, B., Ranjan, R. and Ghosh, J. (2019) Novel Printed Leaky-Wave Antenna with Suppressed OSB for Broad Angle Scanning. International Conference on Microwave Integrated Circuits, Photonic and Wireless Networks, Tiruchirappalli, 22-24 May 2019, 361-364.
https://doi.org/10.1109/IMICPW.2019.8933203
[13]  Karmokar, D.K., Chen, S.-L., Thalakotuna, D., Qin, P.-Y., Bird, T.S. and Jay Guo, Y. (2020) Continuous Backward to Forward Scanning 1-D Slot-Array Leaky-Wave Antenna with Improved Gain. IEEE Antennas and Wireless Propagation Letters, 19, 89-93.
https://doi.org/10.1109/LAWP.2019.2953927
[14]  Li, Y., Xue, Q., Yung, E.K.-N. and Long, Y. (2010) The Backfire-to-Broadside Symmetrical Beam-Scanning Periodic Offset Microstrip Antenna. IEEE Transactions on Antennas and Propagation, 58, 3499-3504.
https://doi.org/10.1109/TAP.2010.2071352
[15]  Li, Y., Xue, Q., Yung, E.K.-N. and Long, Y. (2011) The Periodic Half-Width Microstrip Leaky-Wave Antenna with a Backward to Forward Scanning Capability. IEEE Transactions on ANTENNAS and Propagation, 58, 963-966.
https://doi.org/10.1109/TAP.2009.2039304
[16]  Li, Y., Xue, Q., Tan, H.-Z. and Long, Y. (2011) The Half-Width Microstrip Leaky Wave Antenna with the Periodic Short Circuits. IEEE Transactions on Antennas and Propagation, 59, 3421-3423.
https://doi.org/10.1109/TAP.2011.2161439

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413