Synthesis, Characterization and Crystal Structures of Zwitterionic Triazolato Complexes by Reaction of a Ruthenium Azido Complex with Excess Ethyl Propiolate
The synthesis and structures of two novel zwitterionic ruthenium triazolato complexes are reported. The treatment of the ruthenium azido complex [Ru]?N3 (1, [Ru] = (η5-C5H5)(dppe)Ru, dppe = Ph2PCH2CH2PPh2) with an excess of ethyl propiolate in CHCl3 or CH2Cl2 under ambient conditions for 15 days results in the formation of a mixture of the Z- and E-forms of N(1)-bound ruthenium 3-ethylacryl-4-carboxylate-3H-1,2,3-triazolato complexes [Ru]N3(CH=CHCO2Et)C2H(CO2) (Z-3) and (E-3) in a ratio of ca. 5:2. The structures of E-3 and Z-3 were confirmed by single-crystal X-ray diffraction analysis and fully characterized by 1H, 31P, 13C NMR and IR spectroscopy, mass spectrometry, and elemental analysis. The negatively charged carboxylate moieties of the zwitterionic ruthenium triazolato complexes Z-3 and E-3 are highly nucleophilic and reactive toward a variety of electrophiles, making Z-3 and E-3 potential starting materials for the development of biologically active 1,2,3-triazole derivatives.
References
[1]
Fehlhammer, W.P. and Beck, W. (2013) Azide Chemistry—An Inorganic Perspective, Part I Metal Azides: Overview, General Trends and Recent Developments. Zeitschrift für Anorganische und Allgemeine Chemie, 639, 1053-1082. https://doi.org/10.1002/zaac.201300162
[2]
Fehlhammer, W.P. and Beck, W. (2015) Azide Chemistry—An Inorganic Perspective, Part II [3+2]-Cycloaddition Reactions of Metal Azides and Related Systems. Zeitschrift für Anorganische und Allgemeine Chemie, 641, 1599-1678. https://doi.org/10.1002/zaac.201500165
[3]
Maisuradze, M., Phalavadishvili, G., Gakhokidze, N., Matnadze, M., Tskhvitaia, S. and Kalandia, E. (2017) Novel Diazole/Triazole and Dibenzothiophene Dioxide Containing Pentacyclic Systems with Promising Biological Activities. International Journal of Organic Chemistry, 7, 34-41. https://doi.org/10.4236/ijoc.2017.71004
[4]
Kouwer, P.H.J. and Rowan, A.E. (2017) 1H-1,2,3-Triazole: From Structure to Function and Catalysis. Journal of Heterocyclic Chemistry, 54, 1677-1699. https://doi.org/10.1002/jhet.2770
[5]
Lei, Y.L., Zhang, D.H., Liu, Y., Tian, G.H. and Ge, H.G. (2014) Synthesis and X-Ray Structure of New Anticancer Nucleosides Based on 1-((2-Hydroxyethoxy)Methyl)-5-(Phenylthio)-1H-1,2,4-Triazole-3-Carboxamide. Journal of Crystallization Process and Technology, 4, 135-139. https://doi.org/10.4236/jcpt.2014.43017
[6]
Nadeem, H., Mohsin, M., Afzaal, H., Riaz1, S., Zahid, A. and Muhammad, S.A. (2013) Synthesis and in Vitro Biological Activities of 4,5-Disubstituted 1,2,4-Triazole-3-Thiols. Advances in Microbiology, 3, 366-375. https://doi.org/10.4236/aim.2013.34050
[7]
Abdelmonem, Y.K., El-Essawy, F.A., El-Enein, S.A.A. and El-Sheikh-Amer, M.M. (2013) Docking Studies, Synthesis, and Evaluation of Antioxidant Activities of N-Alkylated, 1,2,4-Triazole, 1,3,4-Oxa-, and Thiadiazole Containing the Aminopyrazolopyridine Derivatives. International Journal of Organic Chemistry, 3, 198-205. https://doi.org/10.4236/ijoc.2013.33026
[8]
Huang, Z.T. and Shi, X. (1990) Synthesis of Heterocyclic Ketene N,S-Acetals and Their Reactions with Esters of α,β-Unsaturated Acids. Synthesis, 2, 162-167. https://doi.org/10.1055/s-1990-26822
[9]
Weber, L., Kaminski, O., Quasdorff, B., Ruhlicke, A., Stammler, H.G. and Neumann, B. (1996) Transition Metal Substituted Acyl Phosphanes and Phosphaalkenes. 28. Reactivity of Metallophosphaalkenes (η5-C5Me5)(CO)2FeP=CR12 (R1 = SiMe3, NMe2) toward Methyl and Ethyl Propiolate. Organometallics, 15, 123-127. https://doi.org/10.1021/om950517x
[10]
Zhang, H., Piacham, T., Drew, M., Patek, M., Mosbach, K. and Ye, L. (2006) Molecularly Imprinted Nanoreactors for Regioselective Huisgen 1,3-Dipolar Cycloaddition Reaction. Journal of the American Chemical Society, 128, 4178-4179. https://doi.org/10.1021/ja057781u
[11]
Goldburge, D.R., Hansen, J. A. and Giguere, R.J. (1993) The Tandem Intramolecular Diels-Alder Reaction. Tetrahedron Letters, 34, 8003-8006. https://doi.org/10.1016/S0040-4039(00)61435-1
[12]
Demarchi, B. and Vogel, P. (1987) Synthesis of Polyfunctional, Linearly Condensed Six-Membered Ring Systems by Regioselective Tandem Diels-Alder Additions. Synthesis and Reactivity of 6,7-bis(Chloromethyl)-8,9-bis(Methylene)-2-Oxabicyclo [3.2.1]nonan-3-one. Tetrahedron Letters, 28, 2239-2242. https://doi.org/10.1016/S0040-4039(00)96090-8
[13]
Fujimori, S. and Carreira, E.M. (2007) Cu(I)-Catalyzed Conjugate Addition of Ethyl Propiolate. Angewandte Chemie International Edition, 46, 4964-4967. https://doi.org/10.1002/anie.200701098
[14]
Elnagdi, N.M.H. and Al-Hokbany, N.S. (2012) Organocatalysis in Synthesis: L-Proline as an Enantioselective Catalyst in the Synthesis of Pyrans and Thiopyrans. Molecules, 17, 4300-4312. https://doi.org/10.3390/molecules17044300
[15]
Acheson, R.M. and Elmore, N.F. (1979) Reactions of Acetylenecarboxylic Esters with Nitrogen-Containing Heterocycles. Advances in Heterocyclic Chemistry, 23, 263-482. https://doi.org/10.1016/S0065-2725(08)60844-2
[16]
Oe, Y., Inoue, T., Kishimoto, H., Sasaki, M., Ohta, T. and Furukawa, I. (2012) Three-Component Coupling Catalyzed by Phosphine: Preparation of α-Amino γ-Oxo Acid Derivatives. International Journal of Organic Chemistry, 2, 111-116. https://doi.org/10.4236/ijoc.2012.22017
[17]
Chang, C.W., Lee, G.H., Lin, Y.C. and Wang, Y. (2018) [3+2] Cycloaddition of Ruthenium Azido Complex with Ethyl Propiolate and Related Reactions. Journal of Organometallic Chemistry, 860, 72-77. https://doi.org/10.1016/j.jorganchem.2018.01.049
[18]
Chang, C.W. and Lee, G.H. (2019) Synthesis of Ruthenium Triazolato Complexes by the [3+2] Cycloaddition of a Ruthenium Azido Complex with Acetylacetylenes. Inorganica Chimica Acta, 494, 232-238. https://doi.org/10.1016/j.ica.2019.05.031
[19]
Chang, C.W. and Lee, G.H. (2019) Synthesis of 1,4,5-Trisubstituted Triazoles by [3+2] Cycloaddition of a Ruthenium Azido Complex with Ynoate Esters. Journal of Organometallic Chemistry, 896, 146-153. https://doi.org/10.1016/j.jorganchem.2019.06.013
[20]
Chang, C.W. and Lee, G.H. (2019) Facile Synthesis of 1,5-Disubstituted 1,2,3-Triazoles by the Regiospecific Alkylation of a Ruthenium Triazolato Complex. Dalton Transactions, 48, 2028-2037. https://doi.org/10.1039/C8DT04189J
[21]
Chang, C.W. and Lee, G.H. (2003) Synthesis of Ruthenium Triazolato and Tetrazolato Complexes by 1,3-Dipolar Cycloadditions of Ruthenium Azido Complex with Alkynes and Alkenes and Regiospecific Alkylation of Triazolates. Organometallics, 22, 3107-3116. https://doi.org/10.1021/om030079r
Chen, R.T., Muir, B.W., Such, G.K., Postma, A., Evans, R.A., Pereira, S.M., McLean, K.M. and Caruso, F. (2010) Surface “Click” Chemistry on Brominated Plasma Polymer Thin Films. Langmuir, 26, 3388-3393. https://doi.org/10.1021/la9031688
[24]
Boominathan, M., Pugazhenthiran, N., Nagaraj, M., Muthusubramanian, S., Murugesan, S. and Bhuvanesh, N. (2013) Nanoporous Titania-Supported Gold Nanoparticle-Catalyzed Green Synthesis of 1,2,3-Triazoles in Aqueous Medium. ACS Sustainable Chemistry & Engineering, 1, 1405–1411. https://doi.org/10.1021/sc400147r
[25]
Merling, E., Lamm, V., Geib, S.J., Lacôte, E. and Curran, D.P. (2012) [3+2]-Dipolar Cycloaddition Reactions of an N-Heterocyclic Carbene Boryl Azide. Organic Letters, 14, 2690-2693. https://doi.org/10.1021/ol300851m