ASTM standards for A413 aluminum alloy specimen assays were used based on standard E399-05, with a minimum requirement of three specimens. Linear elastic fracture mechanic testing was carried out in plane strain conditions and fracture toughness of the tested aluminum, critical stress intensity factor was determined. Four specimens with the selected geometry were made, since in the pre-cracking process a non-acceptable propagation of crack may be present, i.e., the crack does not propagate in a parabolic manner. In like manner, the Type SE (B) specimen, that is, a beam subject to bending under a monotonic load, was used. Stress efforts were induced in the experiment, the load mode for such experiments is mode I, determining a temporary value of the KQ apparent stress intensity factor. When such value complies with the validity criteria of E-399 Standard, it becomes the stress intensity factor KIC of material.
References
[1]
Doblare Castellano, M. and García Villa, L. (1988) Fundamentos de la elasticidad lineal. Síntesis, S. A. (Ed.) (in Spanish) ISBN Digital: 9788499583624.
[2]
ASTM International (2005) Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness KIC of Metallic Materials. US Patent No. ASTM E399-05, West Conshohocken. https://www.astm.org/ https://doi.org/10.1520/E0399-05
[3]
San Millón, F.J., Armendáriz, I., García Martinez, J., Salamanca, A. and Martin de la Escalera, F. (2008) Simulación por Elementos Finitos del Comportamiento en Tole-rancia al daño de Estructuras Aeronáuticas. 8vo Congreso Iberoamericano de In-geniería Mecánica. (in Spanish) Virtual Book ISBN:978-9972-2885-3-1.
[4]
Wahab, M.A. and Alam, M.S. (2003) The Effect of Torsional Interaction of a Circular Porosity and a Solidification Crack on Fatigue Crack Propagation Life of Butt-Welded Joints. The 10th Annual International Conference on Composites/Nano Engineering, New Orleans, 20-26 July 2003, 753-754.
[5]
Arana, J.L. and González, J.J. (2002) Mecánica de Fractura. Editorial universidad del País Vasco, p. 250. (in Spanish) ISSN: 84-8373-455-9.
[6]
Davis J.R. (1993) ASM Specialty Handbook—Aluminum and Aluminum Alloys. ASM International, Almelle, p. 784.
[7]
ASTM International (2015) Standard Test Methods for Tension Testing Wrought and Cast Aluminum-and Magnesium-Alloy Products (Metric). US Patent No. ASTM B557M-15, West Conshohocken. https://www.astm.org/ https://doi.org/10.1520/B0557M-15
[8]
Chen, S., Chen, H., Yang, M., Chen, T. and Guo, K. (2016) Analysis on Fracture Mechanics of Unstable Rock. World Journal of Engineering and Technology, 4, 69-75. https://doi.org/10.4236/wjet.2016.43C009
[9]
ASTM International (2015) Standard Practice for Linear-Elastic Plane-Strain Fracture Toughness Testing of Aluminum Alloys. US Patent No. ASTM B645-10, West Conshohocken. https://www.astm.org/ https://doi.org/10.1520/B0645-10R15
[10]
Gonzales Velázquez, J.L. (1998) Mecánica de Fractura Bases y Aplicaciones. Primera edición, México. (in Spanish) ISBN: 968-18-5544-2.
[11]
Alcalá Cabrelles, J., Llanes Pitarch, L. M, Mateo García, A.M. and Salon Ballesteros, M.N. (2002) Fractura de Materiales. Editorial Universidad Politécnica de Catalunya, Barcelona. (in Spanish) ISBN: 9788498801378. http://hdl.handle.net/2099.3/36175
[12]
Wallin, K. (1985) The Size Effect in KIC Results. Engineering Fracture Mechanics, 22, 149-163. https://doi.org/10.1016/0013-7944(85)90167-5