The circular phased antenna array is commonly used for generating waves bearing Orbital Angular Momentum (OAM) in the radio frequency band, but it achieves a relatively low directivity. To overcome this drawback, we present here a method to improve the directivity of an OAM circular phased antenna array by embedding it inside a Fabry-Perot cavity. The Fabry-Perot cavity contains three main parts: a partially reflecting surface (PRS), an air cavity and a ground plane. Simulation data show that the directivity of this new OAM antenna achieves an improvement of 8.2 dB over the original array. A prototype is realized and characterized. The simulated and measured characteristics are in good agreement.
References
[1]
Mohammadi, S.M., Daldorff, L., Bergman, J., et al. (2010) Orbital Angular Momentum in Radio—A System Study. IEEE Transactions on Antennas and Propagation, 58, 565-572. https://doi.org/10.1109/TAP.2009.2037701
[2]
Tamburini, F., Mari, E., Sponselli, A., et al. (2012) Encoding Many Channels on the Same Frequency through Radio Vorticity: First Experimental Test. New Journal of Physics, 14, Article ID: 033001. https://doi.org/10.1088/1367-2630/14/3/033001
[3]
Wang, J., Yang, J.Y., Ahmed, N., et al. (2012) Terabit Free-Space Data Transmission Employing Orbital Angular Momentum Multiplexing. Nature Photonics, 6, 488-496. https://doi.org/10.1038/nphoton.2012.138
[4]
Yan, Y., Xie, G.D., Ahmed, N., et al. (2014) High-Capacity Millimetre-Wave Communications with Orbital Angular Momentum Multiplexing. Nature Communications, 5, Article No. 4876. https://doi.org/10.1038/ncomms5876
[5]
Patarroyo, N.U., Fraine, A., Simon, D.S., et al. (2013) Object Identification Using Correlated Orbital Angular Momentum States. Physical Review Letters, 110, 043601. https://doi.org/10.1103/PhysRevLett.110.043601
[6]
Liu, K., Chen, Y.Q., Yang, Z.C., et al. (2015) Orbital-Angular-Momentum-Based Electromagnetic Vortex Imaging. IEEE Antennas and Wireless Propagation Letters, 14, 711-714. https://doi.org/10.1109/LAWP.2014.2376970
[7]
Lin, M., Gao, Y., Liu, P., et al. (2016) Super-Resolution Orbital Angular Momentum Based Radar Targets Detection. Electronics Letters, 52, 1168-1170. https://doi.org/10.1049/el.2016.0237
[8]
Barbuto, M., Trotta, F., Bilotti, F., et al. (2014) Circular Polarized Patch Antenna Generating Orbital Angular Momentum. Progress in Electromagnetic Research, 148, 23-30. https://doi.org/10.2528/PIER14050204
[9]
Singh, S., Upadhayay, M.D., Pal, S., OAM (2020) Wave Generation Using Square-Shaped Patch Antenna as Slot Array Equivalence. IEEE Antennas and Wireless Propagation Letters, 19, 680-684. https://doi.org/10.1109/LAWP.2020.2976611
[10]
Li, W.W., Zhu, J.B., Liu, Y.C., et al. (2020) Realization of Third Order OAM Mode Using Ring Patch Antenna. IEEE Transactions on Antennas and Propagation, 68, 7607-7611. https://doi.org/10.1109/TAP.2020.2990311
[11]
Guo, C., Zhao, X.W., Zhu, C., et al. (2019) An OAM Patch Antenna Design and Its Array for Higher Order OAM Mode Generation. IEEE Antennas and Wireless Propagation Letters, 18, 816-820. https://doi.org/10.1109/LAWP.2019.2900265
[12]
Bai, Q., Tennant, A., and Allen, B. (2014) Experimental Circular Phased Array for Generating OAM Radio Beams. Electronics Letters, 50, 1414-1415. https://doi.org/10.1049/el.2014.2860
[13]
Wei, W.L., Mahdjoubi, K., Brousseau, C., Emile, O. (2015) Generation of OAM Waves with Circular Phase Shifter and Array of Patch Antennas. Electronics Letters, 51, 442-443. https://doi.org/10.1049/el.2014.4425
[14]
Nguyen, D. K., Pascal, O., Sokoloff, J., et al. (2015) Antenna Gain and Link Budget for Waves Carrying Orbital Angular Momentum. Radio Science, 50, 1165-1175. https://doi.org/10.1002/2015RS005772
[15]
Turnbull, G.A., Robertson, D.A., Smith, G.M., et al. (1996) The Generation of Free-Space Laguerre-Gaussian Modes at Millimeter-Wave Frequencies by Use of a Spiral Phaseplate. Optics Communications, 127, 183-188. https://doi.org/10.1016/0030-4018(96)00070-3
[16]
Hui, X., Zheng. S., Hu. Y., et al. (2015) Ultralow Reflectivity Spiral Phase Plate for Generation of Millimeter-Wave OAM beam. IEEE Antennas and Wireless Propagation Letters, 14, 966-969. https://doi.org/10.1109/LAWP.2014.2387431
[17]
Niemiec, R., Brousseau, C., Mahdjoubi, K., Emile, O. (2014) Characterization of an OAM flat Plate Antenna in the Millimeter Frequency Band. IEEE Antennas and Wireless Propagation Letters, 13, 1011-1014. https://doi.org/10.1109/LAWP.2014.2326525
[18]
Cheng, L., Hong, W., and Hao, Z.C. (2014) Generation of Electromagnetic Waves with Arbitrary Orbital Angular Momentum Modes. Scientific Reports, 4, Article No. 4814. https://doi.org/10.1038/srep04814
[19]
Wei, W.L., Mahdjoubi, K., Brousseau, C., et al. (2016) Enhancement of Directivity of an OAM Antenna by Using Fabry-Perot Cavity. 10th European Conference on Antennas and Propagation (EuCAP), Davos, Switzerland, 10-15 April 2016, 1-4. https://doi.org/10.1109/EuCAP.2016.7481906
[20]
Mahdjoubi, K., Vu, T.H., Tarot, A.C., et al. (2010) An Overview on the Design and Properties of EBG Antennas. Proceedings of the Fourth European Conference on Antennas and Propagation, Barcelona, Spain, 12-16 April 2010, 1-3.
[21]
Akalin, T., Danglot, J., Vanbésien, O., et al. (2002) A Highly Directive Dipole Antenna Embedded in a Fabry-Perot Type Cavity. IEEE Microwave and Wireless Components Letters, 12, 48-50. https://doi.org/10.1109/7260.982873
[22]
Boutayeb, H., Mahdjoubi, K., Tarot, A.C., et al. (2006) Directivity of an Antenna Embedded Inside a Fabry-Perot Cavity: Analysis and Design. Microwave and Optical Technology Letters, 48, 12-17. https://doi.org/10.1002/mop.21249