全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Improved Directivity of an OAM Antenna by a Fabry-Perot Cavity: An Experimental Study

DOI: 10.4236/ojapr.2021.94006, PP. 65-73

Keywords: Circular Antenna Array, Fabry-Perot Cavity, Orbital Angular Momentum, Patch Antenna, Phase Shifter

Full-Text   Cite this paper   Add to My Lib

Abstract:

The circular phased antenna array is commonly used for generating waves bearing Orbital Angular Momentum (OAM) in the radio frequency band, but it achieves a relatively low directivity. To overcome this drawback, we present here a method to improve the directivity of an OAM circular phased antenna array by embedding it inside a Fabry-Perot cavity. The Fabry-Perot cavity contains three main parts: a partially reflecting surface (PRS), an air cavity and a ground plane. Simulation data show that the directivity of this new OAM antenna achieves an improvement of 8.2 dB over the original array. A prototype is realized and characterized. The simulated and measured characteristics are in good agreement.

References

[1]  Mohammadi, S.M., Daldorff, L., Bergman, J., et al. (2010) Orbital Angular Momentum in Radio—A System Study. IEEE Transactions on Antennas and Propagation, 58, 565-572.
https://doi.org/10.1109/TAP.2009.2037701
[2]  Tamburini, F., Mari, E., Sponselli, A., et al. (2012) Encoding Many Channels on the Same Frequency through Radio Vorticity: First Experimental Test. New Journal of Physics, 14, Article ID: 033001.
https://doi.org/10.1088/1367-2630/14/3/033001
[3]  Wang, J., Yang, J.Y., Ahmed, N., et al. (2012) Terabit Free-Space Data Transmission Employing Orbital Angular Momentum Multiplexing. Nature Photonics, 6, 488-496.
https://doi.org/10.1038/nphoton.2012.138
[4]  Yan, Y., Xie, G.D., Ahmed, N., et al. (2014) High-Capacity Millimetre-Wave Communications with Orbital Angular Momentum Multiplexing. Nature Communications, 5, Article No. 4876.
https://doi.org/10.1038/ncomms5876
[5]  Patarroyo, N.U., Fraine, A., Simon, D.S., et al. (2013) Object Identification Using Correlated Orbital Angular Momentum States. Physical Review Letters, 110, 043601.
https://doi.org/10.1103/PhysRevLett.110.043601
[6]  Liu, K., Chen, Y.Q., Yang, Z.C., et al. (2015) Orbital-Angular-Momentum-Based Electromagnetic Vortex Imaging. IEEE Antennas and Wireless Propagation Letters, 14, 711-714.
https://doi.org/10.1109/LAWP.2014.2376970
[7]  Lin, M., Gao, Y., Liu, P., et al. (2016) Super-Resolution Orbital Angular Momentum Based Radar Targets Detection. Electronics Letters, 52, 1168-1170.
https://doi.org/10.1049/el.2016.0237
[8]  Barbuto, M., Trotta, F., Bilotti, F., et al. (2014) Circular Polarized Patch Antenna Generating Orbital Angular Momentum. Progress in Electromagnetic Research, 148, 23-30.
https://doi.org/10.2528/PIER14050204
[9]  Singh, S., Upadhayay, M.D., Pal, S., OAM (2020) Wave Generation Using Square-Shaped Patch Antenna as Slot Array Equivalence. IEEE Antennas and Wireless Propagation Letters, 19, 680-684.
https://doi.org/10.1109/LAWP.2020.2976611
[10]  Li, W.W., Zhu, J.B., Liu, Y.C., et al. (2020) Realization of Third Order OAM Mode Using Ring Patch Antenna. IEEE Transactions on Antennas and Propagation, 68, 7607-7611.
https://doi.org/10.1109/TAP.2020.2990311
[11]  Guo, C., Zhao, X.W., Zhu, C., et al. (2019) An OAM Patch Antenna Design and Its Array for Higher Order OAM Mode Generation. IEEE Antennas and Wireless Propagation Letters, 18, 816-820.
https://doi.org/10.1109/LAWP.2019.2900265
[12]  Bai, Q., Tennant, A., and Allen, B. (2014) Experimental Circular Phased Array for Generating OAM Radio Beams. Electronics Letters, 50, 1414-1415.
https://doi.org/10.1049/el.2014.2860
[13]  Wei, W.L., Mahdjoubi, K., Brousseau, C., Emile, O. (2015) Generation of OAM Waves with Circular Phase Shifter and Array of Patch Antennas. Electronics Letters, 51, 442-443.
https://doi.org/10.1049/el.2014.4425
[14]  Nguyen, D. K., Pascal, O., Sokoloff, J., et al. (2015) Antenna Gain and Link Budget for Waves Carrying Orbital Angular Momentum. Radio Science, 50, 1165-1175.
https://doi.org/10.1002/2015RS005772
[15]  Turnbull, G.A., Robertson, D.A., Smith, G.M., et al. (1996) The Generation of Free-Space Laguerre-Gaussian Modes at Millimeter-Wave Frequencies by Use of a Spiral Phaseplate. Optics Communications, 127, 183-188.
https://doi.org/10.1016/0030-4018(96)00070-3
[16]  Hui, X., Zheng. S., Hu. Y., et al. (2015) Ultralow Reflectivity Spiral Phase Plate for Generation of Millimeter-Wave OAM beam. IEEE Antennas and Wireless Propagation Letters, 14, 966-969.
https://doi.org/10.1109/LAWP.2014.2387431
[17]  Niemiec, R., Brousseau, C., Mahdjoubi, K., Emile, O. (2014) Characterization of an OAM flat Plate Antenna in the Millimeter Frequency Band. IEEE Antennas and Wireless Propagation Letters, 13, 1011-1014.
https://doi.org/10.1109/LAWP.2014.2326525
[18]  Cheng, L., Hong, W., and Hao, Z.C. (2014) Generation of Electromagnetic Waves with Arbitrary Orbital Angular Momentum Modes. Scientific Reports, 4, Article No. 4814.
https://doi.org/10.1038/srep04814
[19]  Wei, W.L., Mahdjoubi, K., Brousseau, C., et al. (2016) Enhancement of Directivity of an OAM Antenna by Using Fabry-Perot Cavity. 10th European Conference on Antennas and Propagation (EuCAP), Davos, Switzerland, 10-15 April 2016, 1-4.
https://doi.org/10.1109/EuCAP.2016.7481906
[20]  Mahdjoubi, K., Vu, T.H., Tarot, A.C., et al. (2010) An Overview on the Design and Properties of EBG Antennas. Proceedings of the Fourth European Conference on Antennas and Propagation, Barcelona, Spain, 12-16 April 2010, 1-3.
[21]  Akalin, T., Danglot, J., Vanbésien, O., et al. (2002) A Highly Directive Dipole Antenna Embedded in a Fabry-Perot Type Cavity. IEEE Microwave and Wireless Components Letters, 12, 48-50.
https://doi.org/10.1109/7260.982873
[22]  Boutayeb, H., Mahdjoubi, K., Tarot, A.C., et al. (2006) Directivity of an Antenna Embedded Inside a Fabry-Perot Cavity: Analysis and Design. Microwave and Optical Technology Letters, 48, 12-17.
https://doi.org/10.1002/mop.21249

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133