全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

多孔人造板VOC释放的时间分数阶传质模型
A Time-Fractional Mass Transfer Model for Predicting VOC Emissions from Porous Wood-Based Panel

DOI: 10.12677/MP.2022.121001, PP. 1-11

Keywords: VOC释放,人造板,多孔介质,反常扩散,VOC Emission, Wood-Based Panel, Porous Media, Anomalous Diffusion

Full-Text   Cite this paper   Add to My Lib

Abstract:

具有分形结构的多孔人造板散发的挥发性有机化合物(VOC)严重污染室内环境。本文首次提出时间分数阶传质模型分析人造板内VOC散发的反常扩散。并首次建立时间分数阶对流传质边界条件和质量平衡方程揭示VOC在人造板与空气界面处的散发特性。利用有限差分格式和改进的Nelder-Mead单纯形搜索与粒子群优化方法对模型进行数值优化。与Deng和Kim的模型作对比可知,本模型的数值模拟结果与实验数据吻合更好,且其相对误差Re (0.0034%)远小于先前模型(0.0257%)。这表明现有模型能更准确地揭示人造板中VOC释放的拖尾现象。此外,还分析了关键释放参数对VOC释放的影响,结果表明,较高的α、ε、D、N和较低的Kma均促进VOC的散发,这可为改善室内空气质量提供理论指导。
Volatile organic compounds (VOC) emissions from porous wood-based panel with fractal structure seriously pollute indoor environment. In this paper, a time-fractional mass transfer model is proposed to analyze the anomalous diffusion of VOC emissions from wood-based panel. The time-fractional convective mass transfer boundary condition and mass balance equation are both developed for the first time. The finite difference scheme and the improved Nelder-Mead simplex search and particle swarm optimization are used to optimize the model numerically. Compared with Deng and Kim’s model, the numerical simulation results of present model are in better agreement with the experimental data, and the relative error Re (0.0034%) is much smaller than that of the previous model (0.0257%). This shows that the present model can reveal better the heavy-tailed phenomenon of VOC releases from wood-based panel more accurately. In addition, the influences of the key release parameters on VOC emission are analyzed. The results indicate that higher α, ε, D, N and lower Kma all can promote VOC emission, which can provide theoretical guidance for improving indoor air quality.

References

[1]  Wi, S., Kim, M.G., Myung, S.W., Baik, Y.K., Lee, K.B., Song, H.S., Kwak, M.J. and Kim, S. (2020) Evaluation and Analysis of Volatile Organic Compounds and Formaldehyde Emission of Building Products in Accordance with Legal Standards: A Statistical Experimental Study. Journal of Hazardous Materials, 393, Article ID: 122381.
https://doi.org/10.1016/j.jhazmat.2020.122381
[2]  Gao, M.P., Liu, W.W., Wang, H.L., Shao, X., Shi, A.J., An, X.S., Li, G.H. and Nie, L. (2020) Emission Factors and Characteristics of Volatile Organic Compounds (VOCs) from Adhesive Application in Indoor Decoration in China. Science of the Total Environment, 779, Article ID: 145169.
https://doi.org/10.1016/j.scitotenv.2021.145169
[3]  Huang, Y., Su, T., Wang, L.Q., et al. (2019) Evaluation and Characterization of Volatile Air Toxics Indoors in a Heavy Polluted City of Northwestern China in Wintertime. Science of the Total Environment, 662, 470-480.
https://doi.org/10.1016/j.scitotenv.2019.01.250
[4]  Mohamed, B., Danh, C.V., Phuc, H.V., et al. (2020) Health Risk Assessment of Volatile Organic Compounds at Daycare Facilities. Indoor Air, 31, 977-988.
[5]  Zhang, S., Chen, H., Zhang, J.N., Li, J., Hou, H.W. and Hu, Q.Y. (2020) The Multiplex Interactions and Molecular Mechanism on Ge-notoxicity Induced by Formaldehyde and Acrolein Mixtures on Human Bronchial Epithelial BEAS-2B Cells. Envi-ronment International, 143, Article ID: 105943.
https://doi.org/10.1016/j.envint.2020.105943
[6]  Ioannis, S., Dikaia, S., Corinne, M., et al. (2020) Association of Subjective Health Symptoms with Indoor Air Quality in European Office Buildings: The OFFICAIR Project. Indoor Air, 31, 426-439.
https://doi.org/10.1111/ina.12749
[7]  Konkle, S.L., Zierold, K.M., Taylor, K.C., Riggs, D.W. and Bhatnagar, A. (2020) National Secular Trends in Ambient Air Volatile Organic Compound Levels and Biomarkers of Exposure in the United States. Environmental Research, 182, Article ID: 108991.
https://doi.org/10.1016/j.envres.2019.108991
[8]  Zhang, Z.F., Zhang, X., Zhang, X.M., Liu, L.Y., Li, Y.F. and Sun, W. (2020) Indoor Occurrence and Health Risk of Formaldehyde, Toluene, Xylene and Total Volatile Organic Compounds Derived from an Extensive Monitoring Campaign in Harbin, a Megacity of China. Che-mosphere, 250, Article ID: 126324.
https://doi.org/10.1016/j.chemosphere.2020.126324
[9]  Little, J.C., Hodgson, A.T. and Gadgil, A.J. (1994) Modeling Emissions of Volatile Organic Compounds from New Carpets. Atmospheric Environment, 28, 227-234.
https://doi.org/10.1016/1352-2310(94)90097-3
[10]  Zhang, Y.P. and Xu, Y. (2003) Characteristics and Correla-tions of VOC Emissions from Building Materials. International Journal of Heat and Mass Transfer, 46, 4877-4883.
https://doi.org/10.1016/S0017-9310(03)00352-1
[11]  Deng, B.Q. and Kim, C.N. (2004) An Analytical Model for VOCs Emission from Dry Building Materials. Atmospheric Environment, 38, 1173-1180.
https://doi.org/10.1016/j.atmosenv.2003.11.009
[12]  Xu, Y. and Zhang, Y.P. (2004) A General Model for Ana-lyzing Single Surface VOC Emission Characteristics from Building Materials and Its Application. Atmospheric Envi-ronment, 38, 113-119.
https://doi.org/10.1016/j.atmosenv.2003.09.020
[13]  Wang, X.K., Zhang, Y.P. and Zhao, R.Y. (2006) Study on Characteristics of Double Surface VOC Emissions from Dry Flat-Plate Building Materials. Chinese Science Bulletin, 51, 2287-2293.
https://doi.org/10.1007/s11434-006-2110-4
[14]  Yang, T., Zhang, P.P., Xu, B.P. and Xiong, J.Y. (2017) Predicting VOC Emissions from Materials in Vehicle Cabins: Determination of the Key Parameters and the In-fluence of Environmental Factors. International Journal of Heat and Mass Transfer, 110, 671-679.
https://doi.org/10.1016/j.ijheatmasstransfer.2017.03.049
[15]  He, Z.C., Xiong, J.Y., Kumagai, K. and Chen, W.H. (2019) An Improved Mechanism-Based Model for Predicting the Long-Term Formaldehyde Emissions from Composite Wood Products with Exposed Edges and Seams. Environment International, 132, Article ID: 105086.
https://doi.org/10.1016/j.envint.2019.105086
[16]  Thovert, J.F., Wary, F. and Adler, P.M. (1990) Thermal Con-ductivity of Random Media and Regular Fractals. Journal of Applied Physics, 68, 3872-3883.
https://doi.org/10.1063/1.346274
[17]  Blondeau, P., Tiffonnet, A.L., Damian, A., Amiri, O. and Molina, J.L. (2003) Assessment of Contaminant Diffusivities in Building Materials from Porosimetry Tests. Indoor Air, 13, 302-310.
https://doi.org/10.1034/j.1600-0668.2003.00208.x
[18]  Xiong, J.Y., Zhang, Y.P., Wang, X.K. and Chang, D.W. (2008) Macro-Meso Two-Scale Model for Predicting the VOC Diffusion Coefficients and Emission Characteristics of Porous Building Materials. Atmospheric Environment, 42, 5278-5290.
https://doi.org/10.1016/j.atmosenv.2008.02.062
[19]  Deng, B.Q., Li, R. and Kim, C.N. (2009) A Multi-Phase Model for VOC Emission from Single-Layer Dry Building Materials. Korean Journalof Chemical Engineering, 26, 919-924.
https://doi.org/10.1007/s11814-009-0154-2
[20]  Cai, J.C., Hu, X.Y., Standnes, D.C. and You, L.J. (2012) An Analytical Model for Spontaneous Imbibition in Fractal Porous Media Including Gravity. Colloids and Sur-faces A: Physicochemical and Engineering Aspects, 414, 228-233.
https://doi.org/10.1016/j.colsurfa.2012.08.047
[21]  Liu, Y.F., Zhou, X.J., Wang, D.J., Song, C. and Liu, J.P. (2015) A Diffusivity Model for Predicting VOC Diffusion in Porous Building Materials Based on Fractal Theory. Journal of Hazardous Materials, 299, 685-695.
https://doi.org/10.1016/j.jhazmat.2015.08.002
[22]  Zhou, X.J., Liu, Y.F., Song, C., Wang, X.K., Wang, F.H. and Liu, J.P. (2019) Modelling and Testing of VOC Source Suppression Effect of Building Materials Modified with Ad-sorbents. Building and Environment, 154, 122-131.
https://doi.org/10.1016/j.buildenv.2019.03.003
[23]  Zhou, X.J., Gao, Z., Wang, X.K. and Wang, F.B. (2020) Mathematical Model for Characterizing the Full Process of Volatile Organic Compound Emissions from Paint Film Coating on Porous Substrates. Building and Environment, 182, Article ID: 107062.
https://doi.org/10.1016/j.buildenv.2020.107062
[24]  Su, Y., Ng, T., Zhang, Y.P. and Davidson, J.H. (2018) A Mesoscopic Model for Transient Mass Transfer of Volatile Organic Compounds from Porous Walls of Different Structures. International Journal of Heat and Mass Transfer, 117, 36-49.
https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.131
[25]  Yao, Y.R., Mi, N., He, C., Yin, L., Zhou, D.B., Zhang, Y., Sun, H.G., Yang, S.G., Li, S.Y. and He, H. (2020) Transport of Arsenic Loaded by Ferric Humate Colloid in Saturated Porous Media. Chemosphere, 240, Article ID: 124987.
https://doi.org/10.1016/j.chemosphere.2019.124987
[26]  Chang, A.L., Sun, H.G., Zheng, C.M., Lu, B.Q., Lu, C.P., Ma, R. and Zhang, Y. (2018) A Time Fractional Convection-Diffusion Equation to Model Gas Transport through Heterogeneous Soil and Gas Reservoirs. Physica A, 502, 356-369.
https://doi.org/10.1016/j.physa.2018.02.080
[27]  Kang, J.H., Zhou, F.B., Xia, T.Q. and Ye, G.B. (2016) Numer-ical Modeling and Experimental Validation of Anomalous Time and Space Subdiffusion for Gas Transport in Porous Coal Matrix. International Journal of Heat and Mass Transfer, 100, 747-757.
https://doi.org/10.1016/j.ijheatmasstransfer.2016.04.110
[28]  Zhokh, A.A., Trypolskyi, A.I. and Strizhak, P.E. (2017) An Investigation of Anomalous Time-Fractional Diffusion of Isopropyl Alcohol in Mesoporous Silica. Interna-tional Journal of Heat and Mass Transfer, 104, 493-502.
https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.095
[29]  Zhang, Y., Jiang, J.X., Bai, Y., Liu, J.M., Shao, H.Q., Wu, C.D. and Guo, Z.B. (2019) A Fractional Mass Transfer Model for Simulating VOC Emissions from Porous, Dry Building Material. Building and Environment, 152, 182-191.
https://doi.org/10.1016/j.buildenv.2019.01.053
[30]  Bai, Y., Huo, L.M., Zhang,Y., Liu, J.M., Shao, H.Q., Wu, C.D. and Guo, Z.B. (2020) A Spatial Fractional Diffusion Model for Predicting the Characteristics of VOCs Emission in Porous Dry Building Material. Science of the Total Environment, 704, Article ID: 135342.
https://doi.org/10.1016/j.scitotenv.2019.135342
[31]  Chen, S.Z., Liu, F.W., Turner, I. and Hu, X.L. (2018) Nu-merical Inversion of the Fractional Derivative Index and Surface Thermal Flux for an Anomalous Heat Conduction Model in a Multi-Layer Medium. Applied Mathematical Modelling, 59, 514-526.
https://doi.org/10.1016/j.apm.2018.01.045
[32]  Liu, L., Zheng, L.C. and Chen, Y.P. (2018) Macroscopic and Microscopic Anomalous Diffusion in Comb Model with Fractional Dual-Phase-Lag Model. Applied Mathematical Modelling, 62, 629-637.
https://doi.org/10.1016/j.apm.2018.06.019
[33]  Saratha, S.R., Sai, G.S.K. and Bagyalakshmi, M. (2021) Analysis of a Fractional Epidemic Model by Fractional Generalisedhomotopy Analysis Method Using Modified Rie-mann-Liouville Derivative. Applied Mathematical Modelling, 92, 525-545.
https://doi.org/10.1016/j.apm.2020.11.019
[34]  Liu, F., Zhuang, P. and Burrage, K. (2012) Numerical Methods and Analysis for a Class of Fractional Advection—Dispersion Models. Computers and Mathematics with Applications, 64, 2990-3007.
https://doi.org/10.1016/j.camwa.2012.01.020
[35]  Xu, P., Zhang, L.P., Rao, B.Q., Qiu, S.X., Shen, Y.Q. and Wang, M. (2020) A Fractal Scaling Law bewteen Tortuosity and Porosity in Porous Media. Fractals, 28, Article ID: 2050025.
[36]  Liu, F., Anh, V. and Turner, I. (2004) Numerical Solution of the Space Fractional Fokk-er-Planckequation. Journal of Computational and Applied Mathematics, 166, 209-219.
https://doi.org/10.1016/j.cam.2003.09.028
[37]  Liu, F., Urrage, K.B. and Hamilton, N.A. (2013) Some Novel Techniques of Parameter Estimation for Dynamical Models in Biological Systems. IMA Journal of Applied Mathematics, 78, 235-260.
https://doi.org/10.1093/imamat/hxr046
[38]  Liu, F. and Burrage, K. (2011) Novel Techniques in Parameter Es-timation for Fractional Dynamical Models Arising from Biological Systems. Computers and Mathematics with Appli-cations, 62, 822-833.
https://doi.org/10.1016/j.camwa.2011.03.002
[39]  Yang, X., Chen, Q., Zhang, J.S., Magee, R., Zeng, J. and Shaw, C.Y. (2001) Numerical Simulation of VOC Emissions from Dry Materials. Building and Environment, 36, 1099-1107.
https://doi.org/10.1016/S0360-1323(00)00078-0

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133