全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Antioxidant and Cytotoxic Activities of Clove Oil Nanoparticles and Evaluation of Its Size and Retention Efficiency

DOI: 10.4236/msa.2022.131003, PP. 39-53

Keywords: Nanoprecipitation, PLA, Clove Oil, Antioxidant

Full-Text   Cite this paper   Add to My Lib

Abstract:

A derivation of the nanoprecipitation technique without the presence of surfactants to reduce the nanoparticle size is herein proposed. The absence of surfactant in the nanoprecipitation technique allows capturing particles with a smaller diameter than nanoparticles containing surfactants, facilitating the migration of antioxidant nanoparticles in film packaging. Biodegradable PLA nanoparticles with clove oil were produced and characterized by dynamic light scattering, zeta potential, Fourier transform infrared spectroscopy, retention efficiency, cytotoxicity, and antioxidant activity. The particle sizes obtained were smaller than those commonly produced by nanoprecipitation, monodispersed and stable for 6 months. The antioxidant activity showed that the encapsulated form of clove oil had greater antioxidant activity than unencapsulated clove oil. The addition of PLA nanoparticles decreased the cytotoxic action of eugenol, the main antioxidant component of clove oil.

References

[1]  Bahrami, A., Delshadi, R., Assadpour, E., Jafari, S.M. and Williams, L. (2020) Antimicrobial-Loaded Nanocarriers for Food Packaging Applications. Advances in Colloid and Interface Science, 278, Article ID: 102140.
https://doi.org/10.1016/j.cis.2020.102140
[2]  Biswas, J.K., Rai, M., Ingle, A.P., Mondal, M. and Biswas, S. (2018) Nano-Bio Interactions and Ecotoxicity in Aquatic Environment: Plenty of Room at the Bottom but Tyranny at the Top! In: Nanomaterials: Ecotoxicity, Safety, and Public Perception, Springer International Publishing, Berlin, 19-36.
https://doi.org/10.1007/978-3-030-05144-0_2
[3]  Brandelli, A. (2020) The Interaction of Nanostructured Antimicrobials with Biological Systems: Cellular Uptake, Trafficking and Potential Toxicity. Food Science and Human Wellness, 9, 8-20.
https://doi.org/10.1016/j.fshw.2019.12.003
[4]  Sutha, M., Selvaraj, R., Kulkarni, V.V., Chandirasekaran, V., Edwin, S.C. and Malmarugan, S. (2018) Effect of Rosemary Essential Oil on the Quality Characteristics of Chicken Nuggets. International Journal of Current Microbiology and Applied Sciences, 7, 4686-4693.
https://doi.org/10.20546/ijcmas.2018.708.492
[5]  Ju, J., Chen, X., Xie, Y., Yu, H., Guo, Y., Cheng, Y., Qian, H. and Yao, W. (2019) Application of Essential Oil as a Sustained Release Preparation in Food Packaging. Trends in Food Science & Technology, 92, 22-32.
https://doi.org/10.1016/j.tifs.2019.08.005
[6]  Ribeiro-Santos, R., Andrade, M. and Sanches-Silva, A. (2017) Application of Encapsulated Essential Oils as Antimicrobial Agents in Food Packaging. Current Opinion in Food Science, 14, 78-84.
https://doi.org/10.1016/j.cofs.2017.01.012
[7]  Bhargava, K., Conti, D.S., da Rocha, S.R.P. and Zhang, Y. (2015) Application of an Oregano Oil Nanoemulsion to the Control of Foodborne Bacteria on Fresh Lettuce. Food Microbiology, 47, 69-73.
https://doi.org/10.1016/j.fm.2014.11.007
[8]  He, X. and Hwang, H.-M. (2016) Nanotechnology in Food Science: Functionality, Applicability, and Safety Assessment. Journal of Food and Drug Analysis, 24, 671-681.
https://doi.org/10.1016/j.jfda.2016.06.001
[9]  Becerril, R., Nerín, C. and Silva, F. (2020) Encapsulation Systems for Antimicrobial Food Packaging Components: An Update. Molecules, 25, 1134.
https://doi.org/10.3390/molecules25051134
[10]  Hossain, M.A., Al-Hashmi, R.A., Weli, A.M., Al-Riyami, Q. and Al-Sabahib, J.N. (2012) Constituents of the Essential Oil from Different Brands of Syzigium caryophyllatum L by Gas Chromatography-Mass Spectrometry. Asian Pacific Journal of Tropical Biomedicine, 2, S1446-S1449.
https://doi.org/10.1016/S2221-1691(12)60435-3
[11]  Sadaka, F., Nguimjeu, C., Brachais, C.-H., Vroman, I., Tighzert, L. and Couvercelle, J.-P. (2013) WITHDRAWN: Review on Antimicrobial Packaging Containing Essential Oils and Their Active Biomolecules. Innovative Food Science & Emerging Technologies, 20, 350.
https://doi.org/10.1016/j.ifset.2013.01.004
[12]  Neela, E. and Sandhu, H.K. (2019) Food Packaging Development: Recent Perspective. Journal of Thin Films, Coating Science Technology and Application, 6, 2-17.
http://engineeringjournals.stmjournals.in/index.php/JoTCSTA/article/view/3511
[13]  Shamaei, S., Seiiedlou, S.S., Aghbashlo, M., Tsotsas, E. and Kharaghani, A. (2017) Microencapsulation of Walnut Oil by Spray Drying: Effects of Wall Material and Drying Conditions on Physicochemical Properties of Microcapsules. Innovative Food Science & Emerging Technologies, 39, 101-112.
https://doi.org/10.1016/j.ifset.2016.11.011
[14]  Asbahani, A.E., Miladi, K., Badri, W., Sala, M., Addi, E.H.A., Casabianca, H., Mousadik, A.E., Hartmann, D., Jilale, A., Renaud, F.N.R. and Elaissari, A. (2015) Essential Oils: From Extraction to Encapsulation. International Journal of Pharmaceutics, 483, 220-243.
https://doi.org/10.1016/j.ijpharm.2014.12.069
[15]  Hossain, F., Follett, P., Salmieri, S., Vu, K.D., Fraschini, C. and Lacroix, M. (2019) Antifungal Activities of Combined Treatments of Irradiation and Essential Oils (EOs) Encapsulated Chitosan Nanocomposite Films in In Vitro and In Situ Conditions. International Journal of Food Microbiology, 295, 33-40.
https://doi.org/10.1016/j.ijfoodmicro.2019.02.009
[16]  Tiwari, S., Singh, B.K. and Dubey, N.K. (2020) Encapsulation of Essential Oils—A Booster to Enhance their Bio-Efficacy as Botanical Preservatives. Journal of Scientific Research, 64, 175-178.
https://doi.org/10.37398/JSR.2020.640125
[17]  Fessi, H., Puisieux, F., Devissaguet, J.P., Ammoury, N. and Benita, S. (1989) Nanocapsule Formation by Interfacial Polymer Deposition Following Solvent Displacement. International Journal of Pharmaceutics, 55, R1-R4.
https://doi.org/10.1016/0378-5173(89)90281-0
[18]  de Oliveira, A.M., Jager, E., Jager, A., Stepánek, P. and Giacomelli, F.C. (2013) Physicochemical Aspects behind the Size of Biodegradable Polymeric Nanoparticles: A Step Forward. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 436, 1092-1102.
https://doi.org/10.1016/j.colsurfa.2013.08.056
[19]  Cushen, M., Kerry, J., Morris, M., Cruz-Romero, M. and Cummins, E. (2012) Nanotechnologies in the Food Industry—Recent Developments, Risks and Regulation. Trends in Food Science & Technology, 24, 30-46.
https://doi.org/10.1016/j.tifs.2011.10.006
[20]  Honarvar, Z., Hadian, Z. and Mashayekh, M. (2016) Nanocomposites in Food Packaging Applications and Their Risk Assessment for Health. Electronic Physician, 8, 2531-2538.
https://doi.org/10.19082/2531
[21]  Enescu, D., Cerqueira, M.A., Fucinos, P. and Pastrana, L.M. (2019) Recent Advances and Challenges on Applications of Nanotechnology in Food Packaging. A Literature Review. Food and Chemical Toxicology, 134, Article ID: 110814.
https://doi.org/10.1016/j.fct.2019.110814
[22]  Rivas, C.J.M., Tarhini, M., Badri, W., Miladi, K., Greige-Gerges, H., Nazari, Q.A., Rodríguez, S.A.G., Román, R.á., Fessi, H. and Elaissari, A. (2017) Nanoprecipitation Process: From Encapsulation to Drug Delivery. International Journal of Pharmaceutics, 532, 66-81.
https://doi.org/10.1016/j.ijpharm.2017.08.064
[23]  Casalini, T., Rossi, F., Castrovinci, A. and Perale, G. (2019) A Perspective on Polylactic Acid-Based Polymers Use for Nanoparticles Synthesis and Applications. Frontiers in Bioengineering and Biotechnology, 7, 259.
https://doi.org/10.3389/fbioe.2019.00259
[24]  Narayanamurthy, V., Samsuri, F., Khan, A.Y.F., Hamzah, H.A., Baharom, M.B., Kumary, T.V., Kumar, P.R.A. and Raj, D.K. (2019) Direct Cell Imprint Lithography in Superconductive Carbon Black Polymer Composites: Process Optimization, Characterization and In Vitro Toxicity Analysis. Bioinspiration & Biomimetics, 15, Article ID: 016002.
https://doi.org/10.1088/1748-3190/ab1243
[25]  ISO 10993-5:2009 (2009) Biological Evaluation of Medical Devices—Part 5: Tests for in Vitro Cytotoxicity; German Version EN ISO 10993-5:2009.
https://www.iso.org/standard/36406.html
[26]  Miladi, K., Sfar, S., Fessi, H. and Elaissari, A. (2016) Nanoprecipitation Process: From Particle Preparation to In Vivo Applications. In: Polymer Nanoparticles for Nanomedicines, Springer International Publishing, Berlin, 17-53.
https://doi.org/10.1007/978-3-319-41421-8_2
[27]  Tavares, M.R., Menezes, L.R.D., Filho, J.C.D., Cabral, L.M. and Tavares, M.I.B. (2017) Surface-Coated Polycaprolactone Nanoparticles with Pharmaceutical Application: Structural and Molecular Mobility Evaluation by TD-NMR. Polymer Testing, 60, 39-48.
https://doi.org/10.1016/j.polymertesting.2017.01.032
[28]  da Rocha, L.V.M., Merat, L.C., de Menezes, L.R., Finotelli, P.V., da Silva, P.S.R.C. and Tavares, M.I.B. (2019) Extract of Curcuminoids Loaded on Polycaprolactone and Pluronic Nanoparticles: Chemical and Structural Properties. Applied Nanoscience, 10, 1141-1156.
https://doi.org/10.1007/s13204-019-01197-w
[29]  Hong, J.S., Srivastava, D. and Lee, I. (2018) Fabrication of Poly(lactic acid) Nanoand Microparticles Using a Nanomixer via Nanoprecipitation or Emulsion Diffusion. Journal of Applied Polymer Science, 135, 46199.
https://doi.org/10.1002/app.46199
[30]  Lindner, M., Baumler, M. and Stabler, A. (2018) Inter-Correlation among the Hydrophilic-Lipophilic Balance, Surfactant System, Viscosity, Particle Size, and Stability of Candelilla Wax-Based Dispersions. Coatings, 8, 469.
https://doi.org/10.3390/coatings8120469
[31]  Wan, K.Y., Wong, K.W., Chow, A.H.L. and Chow, S.F. (2018) Impact of Molecular Rearrangement of Amphiphilic Stabilizers on Physical Stability of Itraconazole Nanoparticles Prepared by Flash Nanoprecipitation. International Journal of Pharmaceutics, 542, 221-231.
https://doi.org/10.1016/j.ijpharm.2018.03.006
[32]  Chow, S.F., Wan, K.Y., Cheng, K.K., Wong, K.W., Sun, C.C., Baum, L. and Chow, A.H.L. (2015) Development of Highly Stabilized Curcumin Nanoparticles by Flash Nanoprecipitation and Lyophilization. European Journal of Pharmaceutics and Biopharmaceutics, 94, 436-449.
https://doi.org/10.1016/j.ejpb.2015.06.022
[33]  Liu, Y., Yang, G., Zou, D., Hui, Y., Nigam, K., Middelberg, A.P.J. and Zhao, C.-X. (2019) Formulation of Nanoparticles Using Mixing-Induced Nanoprecipitation for Drug Delivery. Industrial & Engineering Chemistry Research, 59, 4134-4149.
https://doi.org/10.1021/acs.iecr.9b04747
[34]  Zhu, Z. (2014) Flash Nanoprecipitation: Prediction and Enhancement of Particle Stability via Drug Structure. Molecular Pharmaceutics, 11, 776-786.
https://doi.org/10.1021/mp500025e
[35]  Mainardes, R.M., Khalil, N.M. and Gremiao, M.P.D. (2010) Intranasal Delivery of Zidovudine by PLA and PLA-PEG Blend Nanoparticles. International Journal of Pharmaceutics, 395, 266-271.
https://doi.org/10.1016/j.ijpharm.2010.05.020
[36]  Kumari, P. and Dang, S. (2020) Development and In Vitro Characterization of Diazepam Loaded PLA Nanoparticles. Materials Today: Proceedings, 28, 246-250.
https://doi.org/10.1016/j.matpr.2020.01.599
[37]  Somvanshi, S.B., Patade, S.R., Andhare, D.D., Jadhav, S.A., Khedkar, M.V., Kharat, P.B., Khirade, P.P. and Jadhav, K.M. (2020) Hyperthermic Evaluation of Oleic Acid Coated Nano-Spinel Magnesium Ferrite: Enhancement via Hydrophobic-to-Hydrophilic Surface Transformation. Journal of Alloys and Compounds, 835, Article ID: 155422.
https://doi.org/10.1016/j.jallcom.2020.155422
[38]  Kaasalainen, M., Makila, E., Riikonen, J., Kovalainen, M., Jarvinen, K., Herzig, K.-H., Lehto, V.-P. and Salonen, J. (2012) Effect of Isotonic Solutions and Peptide Adsorption on Zeta Potential of Porous Silicon Nanoparticle Drug Delivery Formulations. International Journal of Pharmaceutics, 431, 230-236.
https://doi.org/10.1016/j.ijpharm.2012.04.059
[39]  Nagaraju, P.G., Sengupta, P., Chicgovinda, P.P. and Rao, P.J. (2021) Nanoencapsulation of Clove Oil and Study of Physicochemical Properties, Cytotoxic, Hemolytic, and Antioxidant Activities. Journal of Food Process Engineering, 44, e13645.
https://doi.org/10.1111/jfpe.13645
[40]  Ferreira, I.J., de Menezes, L.R. and Tavares, M.I.B. (2021) Morphological and Structural Evaluation of Nanoparticles Loaded with Tea Tree Oil for the Therapeutic Treatment of HPV. Polymer Bulletin, 70.
https://doi.org/10.1007/s00289-021-03780-0
[41]  Singh, G., Maurya, S., Catalan, C. and de Lampasona, M.P. (2004) Chemical Constituents, Antifungal and Antioxidative Effects of Ajwain Essential Oil and Its Acetone Extract. Journal of Agricultural and Food Chemistry, 52, 3292-3296.
https://doi.org/10.1021/jf035211c
[42]  Upadhyaya, S. (2014) Isolation and Characterization of a Bioactive Phenylpropanoid from Ocimum sanctum L. Leaves through Chromatographic and Spectroscopic Methods. American Chemical Science Journal, 4, 286-297.
https://doi.org/10.9734/ACSJ/2014/6609
[43]  Dehkharghani, R.A., Doust, M.Z., Kheiri, M.T. and Shahi, H.H. (2018) Impacts of Chemical Variables on the Encapsulated Corticoids in Poly-ε-caprolactone Nanoparticles and Statistical Biological Analysis. Russian Journal of Applied Chemistry, 91, 1165-1171.
https://doi.org/10.1134/S1070427218070157
[44]  Diyanat, M. and Saeidian, H. (2019) The Metribuzin Herbicide in Polycaprolactone Nanocapsules Shows Less Plant Chromosome Aberration than Non-Encapsulated Metribuzin. Environmental Chemistry Letters, 17, 1881-1888.
https://doi.org/10.1007/s10311-019-00912-x
[45]  Wijayanto, A., Putri, Y.R.P., Hermansyah, H. and Sahlan, M. (2017) Encapsulation of Eugenol from Clove Oil Using Casein Micelle for Solid Preparation. AIP Conference Proceedings, 1817, Article ID: 030012.
https://doi.org/10.1063/1.4976781
[46]  dos Santos, P.D.F., Francisco, C.R.L., Coqueiro, A., Leimann, F.V., Pinela, J., Calhelha, R.C., Ineu, R.P., Ferreira, I.C.F.R., Bona, E. and Goncalves, O.H. (2019) The Nanoencapsulation of Curcuminoids Extracted from Curcuma longa L. and an Evaluation of Their Cytotoxic, Enzymatic, Antioxidant and Anti-Inflammatory Activities. Food & Function, 10, 573-582.
https://doi.org/10.1039/C8FO02431F
[47]  Huang, X., Liu, Y., Zou, Y., Liang, X., Peng, Y., McClements, D.J. and Hu, K. (2019) Encapsulation of Resveratrol in Zein/Pectin Core-Shell Nanoparticles: Stability, Bioaccessibility, and Antioxidant Capacity after Simulated Gastrointestinal Digestion. Food Hydrocolloids, 93, 261-269.
https://doi.org/10.1016/j.foodhyd.2019.02.039
[48]  Hume, W.R. (1984) Basic Biological Sciences Effect of Eugenol on Respiration and Division in Human Pulp, Mouse Fibroblasts, and Liver Cells In Vitro. Journal of Dental Research, 63, 1262-1265.
https://doi.org/10.1177/00220345840630110101
[49]  Ho, Y.C., Huang, F.M. and Chang, Y.C. (2006) Mechanisms of Cytotoxicity of Eugenol in Human Osteoblastic Cells In Vitro. International Endodontic Journal, 39, 389-393.
https://doi.org/10.1111/j.1365-2591.2006.01091.x
[50]  Tai, K., Huang, F. and Chang, Y. (2001) Cytotoxic Evaluation of Root Canal Filling Materials on Primary Human Oral Fibroblast Cultures and a Permanent Hamster Cell Line. Journal of Endodontics, 27, 571-573.
https://doi.org/10.1097/00004770-200109000-00004
[51]  Tsou, C.-H., Yao, W.-H., Lu, Y.-C., Tsou, C.-Y., Wu, C.-S., Chen, J., Wang, R., Su, C., Hung, W.-S., De Guzman, M. and Suen, M.-C. (2017) Antibacterial Property and Cytotoxicity of a Poly(Lactic Acid)/Nanosilver-Doped Multiwall Carbon Nanotube Nanocomposite. Polymers, 9, 100.
https://doi.org/10.3390/polym9030100
[52]  Mania, S., Partyka, K., Pilch, J., Augustin, E., Cieslik, M., Ryl, J., Jinn, J.-R., Wang, Y.-J., Michalowska, A. and Tylingo, R. (2019) Obtaining and Characterization of the PLA/Chitosan Foams with Antimicrobial Properties Achieved by the Emulsification Combined with the Dissolution of Chitosan by CO2 Saturation. Molecules, 24, 4532.
https://doi.org/10.3390/molecules24244532
[53]  Chinavinijkul, P., Riansuwan, K., Kiratisin, P., Srisang, S. and Nasongkla, N. (2021) Dip- and Spray-Coating of Schanz Pin with PLA and PLA Nanosphere for Prolonged Antibacterial Activity. Journal of Drug Delivery Science and Technology, 65, Article ID: 102667.
https://doi.org/10.1016/j.jddst.2021.102667
[54]  Botrel, D.A., Fernandes, R.V.D.B. and Borges, S.V. (2015) Microencapsulation of Essential Oils Using Spray Drying Technology. In: Microencapsulation and Microspheres for Food Applications, Elsevier, Amsterdam, 235-251.
https://doi.org/10.1016/B978-0-12-800350-3.00013-3

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413