全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Comparison of Molecular Properties (Stabilities, Reactivity and Interaction) of Manzamenones and Two Antimalarial Drugs (Quinine and Artemisinin) Using Mixed Method Calculations (ONIOM) and DFT (B3LYP)

DOI: 10.4236/cc.2022.101001, PP. 1-18

Keywords: Manzamenone, Antimalarial Drug, Quantum Chemistry, Reactivity, Electrostatic Potential

Full-Text   Cite this paper   Add to My Lib

Abstract:

Malaria is a real public health problem. It’s one of the pathologies that mobilize the scientific community. Resistance to existing treatments is the basis for the search for new treatments. Some molecules such as Manzamenones have shown important antimalarial properties. These molecules belong to the family of atypical fatty acid derivatives. This work presents the relative stabilities, some reactivity properties and the privileged sites of interaction by hydrogen bond of fourteen Manzamenones and two antimalarial drugs: quinine and Artemisinin. These analyses were performed using quantum chemical calculations. We employed the two-layer ONIOM calculation method; namely ONIOM (B3LYP/6-311++G (d, p): AM1) for the fourteen Manzamenones. The geometries of the two antimalarials are calculated at B3LYP/6-311++G (d, p). The electrostatic potential (ESP) calculation of all molecules is done at the B3LYP/6-31++G (d, p) level. The formation processes of the molecules are discussed from the thermodynamic quantities we have calculated. The relative stabilities, the energies of the frontier orbitals, the energy gaps, the dipole moment, etc., are evaluated and discussed. The electrostatic potential at the molecular surface has been used to identify the sites favorable to the formation of hydrogen bonds.

References

[1]  Olumese, P. (2005) Epidemiology and Surveillance: Changing the Global Picture of Malaria—Myth or Reality? Acta Tropica, 95, 265-269.
https://doi.org/10.1016/j.actatropica.2005.06.006
[2]  Reddy, P.L., Khan, S.I., Ponnan, P., Tripathi, M. and Rawat, D.S. (2017) Synthesis and Evaluation of 4-Aminoquinoline-Purine Hybrids as Potential Antiplasmodial Agents. European Journal of Medicinal Chemistry, 126, 675-686.
https://doi.org/10.1016/j.ejmech.2016.11.057
[3]  Maurya, S.S., Khan, S.I., Bahuguna, A., Kumar, D., Rawat, D.S. (2017) Synthesis, Antimalarial Activity, Heme Binding and Docking Studies of N-Substituted 4-Aminoquinoline-Pyrimidine Molecular Hybrids. European Journal of Medicinal Chemistry, 129, 175-185.
https://doi.org/10.1016/j.ejmech.2017.02.024
[4]  Singh, A., Gut, J., Rosenthal, P.J. and Kumar, V. (2017) 4-Aminoquinoline-Ferrocenyl-Chalcone Conjugates: Synthesis and Anti-Plasmodial Evaluation. European Journal of Medicinal Chemistry, 125, 269-277.
https://doi.org/10.1016/j.ejmech.2016.09.044
[5]  Jones, R.A., Panda, S.S. and Hall, C.D. (2015) Quinine Conjugates and Quinine Analogues as Potential Antimalarial Agents. European Journal of Medicinal Chemistry, 97, 335-355.
https://doi.org/10.1016/j.ejmech.2015.02.002
[6]  Murugan, K., Raichurkar, A.V., Rahman, F., Khan, N. and Iyer, P.S. (2015) Synthesis and in Vitro Evaluation of Novel 8-Aminoquinoline—Pyrazolopyrimidine Hybrids as Potent Antimalarial Agents. Bioorganic & Medicinal Chemistry Letters, 25, 1100-1103.
https://doi.org/10.1016/j.bmcl.2015.01.003
[7]  White, N.J., Pukrittayakamee, S., Hien, T.T., Faiz, M.A., Mokuolu, O.A. and Dondorp, A.M. (2014) Malaria. The Lancet, 383, 723-735.
https://doi.org/10.1016/S0140-6736(13)60024-0
[8]  White, N.J., Nosten, F., Looareesuwan, S. and Olliaro, P. (1999) Averting a Malaria Disaster. The Lancet, 353, 1965-1967.
https://doi.org/10.1016/S0140-6736(98)07367-X
[9]  Demar, M. and Carme, B. (2004) Plasmodium falciparum in Vivo Resistance to Quinine: Description of Tow RIII Responses in French Guinea. American Journal of Tropical Medicine and Hygiene, 70, 125-127.
https://doi.org/10.4269/ajtmh.2004.70.125
[10]  Turschner, S. and Efferth, T. (2009) Drug Resistance in Plasmodium: Natural Products in the Fight against Malaria. Mini-Reviews in Medicinal Chemistry, 9, 206-214.
https://doi.org/10.2174/138955709787316074
[11]  Norris, M.D. and Perkins, M.V. (2016) Structural Diversity and Chemical Synthesis of Peroxide and Peroxide-Derived Polyketide Metabolites from Marine Sponges. Natural Product Reports, 33, 861-880.
https://doi.org/10.1039/C5NP00142K
[12]  Takeuehi, S., Kikuehi, T., Tsukamoto, S., Ishibashi, M. and Kobayashi, J. (1995) Three New Oxylipins Related to 3,6 Dioxo-4-Docosenoic Acid from Okinawan Marine Sponges Plakortis spp. Tetrahedron, 51, 5979-5986.
https://doi.org/10.1016/0040-4020(95)00256-8
[13]  Tanaka, N., Asai, M., Takahashi-Nakaguchi, A., Gonoi, T., Formont, J. and Kobayashi, J. (2013) Manzamenone O, New Trimeric Fatty Acid Derivative from a Marine Sponge Plakortis sp. Organic Letters, 15, 2518-2521.
https://doi.org/10.1021/ol4009975
[14]  Al-Busafi, S. and Whitehead, R.C. (2000) Predispositon in Synthesis: Efficient Routes to (±)-Untenone A and (±)-Manzamenones A, C and F. Tetrahedron Letters, 41, 3467-3470.
https://doi.org/10.1016/S0040-4039(00)00399-3
[15]  Maldanis, R.J., Wood, J.S., Chandrasekaran, A., Rauusch, M.D. and Chien, J.C.W. (2002) The Formation and Polymerization Behavior of Ni(II)-Diimine Complexes Using Various Aluminum Activators. Journal of Organometallic Chemistry, 645, 158-167.
https://doi.org/10.1016/S0022-328X(01)01340-7
[16]  Morokuma, K. (2002) New Challenges in Quantum Chemistry: Quests for Accurate Calculations Forlarge Molecular Systems. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 360, 1149-1164.
https://doi.org/10.1098/rsta.2002.0993
[17]  Dapprich, S., Komáromi, I., Byun, K.S., Morokuma, K. and Frisch, M.J. (1999) A New ONIOM Implementation in Gaussian98. Part I. The Calculation of Energies, Gradients, Vibrational Frequencies and Electric Field Derivatives. Journal of Molecular Structure: THEOCHEM, 461, 1-21.
https://doi.org/10.1016/S0166-1280(98)00475-8
[18]  Vreven, T. and Morokuma, K. (2000) On the Application of the IMOMO (Integrated Molecular Orbital+Molecular Orbital) Method. Journal of Computational Chemistry, 21, 1419-1432.
https://doi.org/10.1002/1096-987X(200012)21:16%3C1419::AID-JCC1%3E3.0.CO;2-C
[19]  Zheng, F. and Zhan, C.G. (2008) Rational Design of an Enzyme Mutant for Anti-Cocaine Therapeutics. Journal of Computer-Aided Molecular Design, 22, 661-671.
https://doi.org/10.1007/s10822-007-9144-9
[20]  Ruangpornvisuti, V. (2004) Recognition of Carboxylate and Dicarboxylates by Azophenol-Thiourea Derivatives: A Theoretical Host-Guest Investigation. Journal of Molecular Structure: THEOCHEM, 686, 47-55.
https://doi.org/10.1016/j.theochem.2004.08.007
[21]  Samanta, P.N. and Das, K.K. (2016) Prediction of Binding Modes and Affinities of 4-Substituted-2,3,5,6-Tetrafluorobenzenesulfonamide Inhibitors to the Carbonic Anhydrasereceptorby Docking and ONIOM Calculations. Journal of Molecular Graphics and Modelling, 63, 38-48.
https://doi.org/10.1016/j.jmgm.2015.11.010
[22]  Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J. and Fox, D.J. (2009) Gaussian, Inc., Wallingford, CT.
[23]  Jakalian, A., Jack, D.B. and Bayly, C.I. (2002) Fast, Efficient Generation of High-Quality Atomic Charges. AM1-BCC Model: II. Parameterization and Validation. Journal of Computational Chemistry, 23, 1623-1641.
https://doi.org/10.1002/jcc.10128
[24]  Hohenberg, P. and Kohn, W. (1964) Inhomogeneous Electron Gas. Physical Review, 136, B864.
https://doi.org/10.1103/PhysRev.136.B864
[25]  Koch, W. and Holthausen, M.C.A (1999) A Chemist’s Guide to Density Functional Theory. 2nd Edition, Wiley-VCH, Weinheim.
[26]  Geerlings, P., De Proft, F. and Langenaeker, W. (2003) Conceptual Density Functional Theory. Chemical Reviews, 103, 1793-1874.
https://doi.org/10.1021/cr990029p
[27]  Chermette, H. (1999) Chemical Reactivity Indexes in Density Functional Theory. Journal of Computational Chemistry, 20, 129-154.
https://doi.org/10.1002/(SICI)1096-987X(19990115)20:1%3C129::AID-JCC13%3E3.0.CO;2-A
[28]  Pearson, R.G. (1963) Hard and Soft Acids and Bases. Journal of the American Chemical Society, 85, 3533-3539.
https://doi.org/10.1021/ja00905a001
[29]  Caro, C.A., Zagal, J.H., Bedioui, F., Adamo, C. and Cardenas-Jiron, G.I. (2004) Solvent Effect on Density Functional Reactivity Indexes Applied to Substituted Nickel Phthalocyanines. The Journal of Physical Chemistry A, 108, 6045-6051.
https://doi.org/10.1021/jp049530y
[30]  Cardenas-Jiron, G.I., Gutierrez-Oliva, S., Melin, J. and Toro-Labbe, A. (1997) Relations between Potential Energy, Electronic Potential and Hardness Profiles. The Journal of Physical Chemistry A, 101, 4621-4627.
https://doi.org/10.1021/jp9638705
[31]  Parr, R.G., Donnelly, R.A., Levy, M. and Palke, W.E. (1978) Electronegativity: The Density Functional Viewpoint. The Journal of Chemical Physics, 68, 3801-3807.
[32]  Mulliken, R.S. (1934) A New Electroaffinity Scale, Together with Data on Valence States and on Valence Ionization Potentials and Electron Affinities. The Journal of Chemical Physics, 2, 782-793.
[33]  Sanderson, R.T. (1951) An Interpretation of Bond Lengths and a Classification of Bond. Science, 114, 670-672.
https://doi.org/10.1126/science.114.2973.670
[34]  Parr, R.G. and Pearson, R.G. (1983) Absolute Hardness: Companion Parameter to Absolute Electronegativity. Journal of the American Chemical Society, 105, 7512-7516.
https://doi.org/10.1021/ja00364a005
[35]  Yang, W. and Parr, R.G. (1985) Hardness, Softness and the Fukui Function in the Electronic Theory of Metals and Catalysis. Proceedings of the National Academy of Sciences of the United States of America, 82, 6723-6726.
https://doi.org/10.1073/pnas.82.20.6723
[36]  Koopmans, T. (1934) Uber die zuordnung von wellenfunk-tionen und eigenwerten zu den einzelnen elektronen eines atoms. Physica, 1, 104-113.
https://doi.org/10.1016/S0031-8914(34)90011-2
[37]  Fukui, K., Yonesawa, T. and Shingu, H. (1952) A Molecular Orbital Theory of Reactivity in Aromatic Hydrocarbons. The Journal of Chemical Physics, 20, 722-725.
[38]  Parr, R.G., Szentpaly, L.V. and Liu, S. (1999) Electrophilicity Index. Journal of the American Chemical Society, 121, 1922-1924.
https://doi.org/10.1021/ja983494x
[39]  Hunter, C.A. (2004) Quantifying Intermolecular Interactions: Guidelines for the Molecular Recognition Toolbox. Angewandte Chemie International Edition, 43, 5310-5324.
https://doi.org/10.1002/anie.200301739
[40]  Hagelin, H., Murray, J.S., Brinck, T., Berthelot, M. and Politzer, P. (1995) Family-Independent Relationships between Computed Molecular Surface Quantities and Solute Hydrogen Bond Acidity/Basicity and Solute-Induced Methanol O-H Infrared Frequency Shifts. Canadian Journal of Chemistry, 73, 483-488.
https://doi.org/10.1139/v95-063
[41]  Brinck, T. (1998) The Use of the Electrostatic Potential for Analysis and Prediction of Intermolecular Interactions. Theoretical and Computational Chemistry, 5, 51-93.
https://doi.org/10.1016/S1380-7323(98)80005-8
[42]  Kenny, P.W. (1994) Prediction of Hydrogen Bond Basicity from Computed Molecular Electrostatic Properties: Implications for Comparative Molecular Field Analysis. Journal of the Chemical Society, Perkin Transactions, 2, 199-202.
https://doi.org/10.1039/p29940000199
[43]  Arnaud, V., Berthelot, M., Evain, M., Graton, J. and Le Questel, J.Y. (2007) Hydrogen-Bond Interactions of Nicotine and Acetylcholine Salts: A Combined Crystallographic, Spectroscopic, Thermodynamic and Theoretical Study. Chemistry—A European Journal, 13, 1499-1510.
https://doi.org/10.1002/chem.200600808
[44]  Graton, J., Berthelot, M., Gal, J.F., Laurence, C., Lebreton, J., Le Questel, J.Y., Maria, P.C. and Robins, R. (2003) The Nicotinic Pharmacophore: Thermodynamics of the Hydrogen-Bonding Complexation of Nicotine, Nornicotine, and Models. The Journal of Organic Chemistry, 68, 8208-8221.
https://doi.org/10.1021/jo035018h
[45]  Le Questel, J.Y., Boquet, G., Berthelot, M. and Laurence, C. (2000) Hydrogen Bonding of Progesterone: a Combined Theoretical, Spectroscopic, Thermodynamic, and Crystallographic Database Study. The Journal of Physical Chemistry B, 104, 11816-11823.
https://doi.org/10.1021/jp002213g
[46]  Wakuda, Y., Kubota, T., Shima, H., Okada, T., Mitsuhashi, S., Aoki, N., Kikuchi, K. and Kobayashi, J. (2006) Manzamenones Inhibit T-Cell Protein Tyrosine Phosphatase. Marine Drugs, 4, 9-14.
https://doi.org/10.3390/md401009
[47]  Kubota, T., Ishiguro, Y., Takahashi-Nakaguchi, A., Fromont, J., Gonoib, T. and Kobayashi, J. (2013) Manzamenones L-N, New Dimeric Fatty-Acid Derivatives from an Okinawan Marine Sponge Plakortis sp. Bioorganic & Medicinal Chemistry Letters, 23, 244-247.
https://doi.org/10.1016/j.bmcl.2012.10.109
[48]  Cho, M.L., Lee, Y.J., Lee, J.S., Shin, H.J. and Lee, H.S. (2020) Antioxidant Properties of the Manzamenones from the Tropical Marine Sponge Plakortis sp. Natural Product Communications, 15.
https://doi.org/10.1177/1934578X19896694
[49]  Kobayashi, J. (2016) Search for New Bioactive Marine Natural Products and Application to Drug Development. Chemical and Pharmaceutical Bulletin, 64, 1079-1083.
[50]  Xavier, S., Periandy, S. and Ramalingam, S. (2015) NBO, Conformational, NLO, HOMO-LUMO, NMR and Electronic Spectral Study on 1-Phenyl-1-Propanol by Quantum Computational Methods. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 137, 306-320.
https://doi.org/10.1016/j.saa.2014.08.039

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133