全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

铌基催化剂在木质素解聚反应中的研究进展
Research Progress of Niobium-Based Catalysts in the Depolymerization of Lignin

DOI: 10.12677/AMC.2022.101002, PP. 6-12

Keywords: 木质素,铌基催化剂,加氢脱氧
Lignin
, Niobium-Based Catalyst, Hydrodeoxygention

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着能源枯竭和环境污染,迫切需要寻找一种可再生资源来提供生产生活中所需的能源与材料。木质素是自然界中可以提供芳香环的大宗可再生资源,是生物质的重要组成部分,具有巨大的经济价值。木质素是由苯丙烷结构单元经C-C键和C-O键连接而成的三维大分子化合物,由于其结构惰性和官能团的复杂性使得木质素成为生物质中最难解聚的物质,催化加氢脱氧技术可将木质素解聚为高附加值小分子化合物。铌基催化剂具有独特的酸性、优异的热稳定性和耐水性,被广泛的应用于脱水、氢解、水解、酯化和烷基化等反应中。本文主要论述了铌基催化剂在木质素的解聚反应中的研究进展及应用。
With the exhaustion of energy resources and environmental pollution, it is a need to find renewable resources to provide the energy and materials needed for production and living. Lignin is a large renewable resource that can provide aromatic rings in nature. It is an important part of biomass and it also has great economic value. Lignin is a three-dimensional polymer compound composed of phenylpropane structural units linked by C-C and C-O bonds. Because of the structural inertia and the complexity of functional groups, lignin has become the most difficult substance to depolymerize in biomass. Catalytic hydrodeoxygenation technology can depolymerize lignin into small molecule compounds with high added value. Niobium-based catalysts have unique acidity, excellent thermal stability and water resistance; it is widely used in dehydration, hydrogenolysis, hydrolysis, esterification and alkylation reactions. This article discusses the research progress and application of niobium-based catalysts in the depolymerization of lignin.

References

[1]  Lee, J.K., Ko, J.B. and Kim, D.H. (2004) Methanol Steam Reforming over Cu/ZnO/Al2O3 Catalyst: Kinetics and Effectiveness Factor. Applied Catalysis A: General, 278, 25-35.
https://doi.org/10.1016/j.apcata.2004.09.022
[2]  Li, C., Zhao, X., Wang, A., Huber, G.W. and Zhang, T. (2015) Catalytic Transformation of Lignin for the Production of Chemicals and Fuels. Chemical Reviews, 115, 11559-11624.
https://doi.org/10.1021/acs.chemrev.5b00155
[3]  Yang, H., Yan, R., Chen, H., Lee, D.H. and Zheng, C. (2007) Characteristics of Hemicellulose, Cellulose and Lignin Pyrolysis. Fuel, 86, 1781-1788.
https://doi.org/10.1016/j.fuel.2006.12.013
[4]  Ma, R., Hao, W., Ma, X., Tian, Y. and Li, Y. (2014) Catalytic Ethanolysis of Kraft Lignin into High‐Value Small‐ Molecular Chemicals over a Nanostructured α‐Molybdenum Carbide Catalyst. Angewandte Chemie, 126, 7438-7443.
https://doi.org/10.1002/ange.201402752
[5]  Doherty, W.O., Mousavioun, P. and Fellows, C.M. (2011) Value-Adding to Cellulosic Ethanol: Lignin Polymers. Industrial Crops and Products, 33, 259-276.
https://doi.org/10.1016/j.indcrop.2010.10.022
[6]  Upton, B.M. and Kasko, A.M. (2016) Strategies for the Conversion of Lignin to High-Value Polymeric Materials: Review and Perspective. Chemical Reviews, 116, 2275-2306.
https://doi.org/10.1021/acs.chemrev.5b00345
[7]  Dantas, S.L.D.A., Lopes-Moriyama, A.L., Sena, M.S. and Souza, C.P.D. (2018) Synthesis and Characterization of Cobalt-Doped Molybdenum Carbides Produced in a Fixed Bed Reactor. Ceramics International, 44, 20551-20555.
https://doi.org/10.1016/j.ceramint.2018.08.054.
[8]  Watanabe, M., Kanaguri, Y. and Smith Jr., R.L. (2018) Hydrothermal Separation of Lignin from Bark of Japanese Cedar. The Journal of Supercritical Fluids, 133, 696-703.
https://doi.org/10.1016/j.supflu.2017.09.009
[9]  Gillet, S., Petitjean, L., Aguedo, M., Lam, C.H., Blecker, C. and Anastas, P.T. (2017) Impact of Lignin Structure on Oil Production via Hydroprocessing with a Copper-Doped Porous Metal Oxide Catalyst. Bioresource Technology, 233, 216-226.
https://doi.org/10.1016/j.biortech.2017.02.090
[10]  Hanson, S.K. and Baker, R.T. (2015) Knocking on Wood: Base Metal Complexes as Catalysts for Selective Oxidation of Lignin Models and Extracts. Accounts of Chemical Research, 48, 2037-2048.
https://doi.org/10.1021/acs.accounts.5b00104
[11]  Jiang, Z. and Hu, C. (2016) Selective Extraction and Conversion of Lignin in Actual Biomass to Monophenols: A Review. Journal of Energy Chemistry, 25, 947-956.
https://doi.org/10.1016/j.jechem.2016.10.008
[12]  Pandey, M.P. and Kim, C.S. (2011) Lignin Depolymerization and Conversion: A Review of Thermochemical Methods. Chemical Engineering & Technology, 34, 29-41.
https://doi.org/10.1002/ceat.201000270
[13]  Galkin, M.V. and Samec, J.S. (2016) Lignin Valorization through Catalytic Lignocellulose Fractionation: A Fundamental Platform for the Future Biorefinery. ChemSusChem, 9, 1544-1558.
https://doi.org/10.1002/cssc.201600237
[14]  Rinaldi, R., Jastrzebski, R., Clough, M.T., Ralph, J., Kennema, M., Bruijnincx, P.C. and Weckhuysen, B.M. (2016) Paving the Way for Lignin Valorisation: Recent Advances in Bioengineering, Biorefining and Catalysis. Angewandte Chemie International Edition, 55, 8164-8215.
https://doi.org/10.1002/anie.201510351
[15]  Ha, J.M., Hwang, K.R., Kim, Y.M., Jae, J., Kim, K.H., Lee, H.W. and Park, Y.K. (2019) Recent Progress in the Thermal and Catalytic Conversion of Lignin. Renewable and Sustainable Energy Reviews, 111, 422-441.
https://doi.org/10.1016/j.rser.2019.05.034
[16]  Wan, H., Chaudhari, R.V. and Subramaniam, B. (2012) Catalytic Hydroprocessing of p-Cresol: Metal, Solvent and Mass-Transfer Effects. Topics in Catalysis, 55, 129-139.
https://doi.org/10.1007/s11244-012-9782-6
[17]  Xiang, Y., Ma, L., Lu, C., Zhang, Q. and Li, X. (2008) Aqueous System for the Improved Hydrogenation of Phenol and Its Derivatives. Green Chemistry, 10, 939-943.
https://doi.org/10.1039/b803217c
[18]  Feng, B., Kobayashi, H., Ohta, H. and Fukuoka, A. (2014) Aqueous-Phase Hydrodeoxygenation of 4-Propylphenol as a Lignin Model to n-Propylbenzene over Re-Ni/ZrO2 Catalysts. Journal of Molecular Catalysis A: Chemical, 388-389, 41-46.
https://doi.org/10.1016/j.molcata.2013.09.025
[19]  Shuai, L., Sitison, J., Sadula, S., Ding, J., Thies, M. C. and Saha, B. (2018) Selective C-C Bond Cleavage of Methylene-Linked Lignin Models and Kraft Lignin. ACS Catalysis, 8, 6507-6512.
https://doi.org/10.1021/acscatal.8b00200
[20]  Ma, D., Lu, S., Liu, X., Guo, Y. and Wang, Y. (2019) Depolymerization and Hydrodeoxygenation of Lignin to Aromatic Hydrocarbons with a Ru Catalyst on a Variety of Nb-Based Supports. Chinese Journal of Catalysis, 40, 609-617.
https://doi.org/10.1016/S1872-2067(19)63317-6
[21]  Mao, J., Zhou, J., Xia, Z., Wang, Z., Xu, Z., Xu, W. and Zhang, Z.C. (2017) Anatase TiO2 Activated by Gold Nanoparticles for Selective Hydrodeoxygenation of Guaiacol to Phenolics. ACS Catalysis, 7, 695-705.
https://doi.org/10.1021/acscatal.6b02368
[22]  Klein, I., Saha, B. and Abu-Omar, M. M. (2015) Lignin Depolymerization over Ni/C Catalyst in Methanol, a Continuation: Effect of Substrate and Catalyst Loading. Catalysis Science & Technology, 5, 3242-3245.
https://doi.org/10.1039/C5CY00490J
[23]  Torr, K. M., vande Pas, D.J., Cazeils, E. and Suckling, I.D. (2011) Mild Hydrogenolysis of in-Situ and Isolated Pinus radiata Lignins. Bioresource Technology, 102, 7608-7611.
https://doi.org/10.1016/j.biortech.2011.05.040
[24]  Xia, Q., Chen, Z., Shao, Y., Gong, X., Wang, H., Liu, X. and Wang, Y. (2016) Direct Hydrodeoxygenation of Raw Woody Biomass into Liquid Alkanes. Nature Communications, 7, Article No.11162.
https://doi.org/10.1038/ncomms11162
[25]  Sarkar, A. and Pramanik, P. (2009) Synthesis of Mesoporous Niobium Oxophosphate Using Niobium Tartrate Precursor by Soft Templating Method. Microporous and Mesoporous Materials, 117, 580-585.
https://doi.org/10.1016/j.micromeso.2008.08.001
[26]  Mal, N.K. and Fujiwara, M. (2002) Synthesis of Hexagonal and Cubic Super-Microporous Niobium Phosphates with Anion Exchange Capacity and Catalytic Properties. Chemical Communications, 22, 2702-2703.
https://doi.org/10.1039/b207976c
[27]  Xi, J., Zhang, Y., Xia, Q., Liu, X., Ren, J., Lu, G. and Wang, Y. (2013) Direct Conversion of Cellulose into Sorbitol with High Yield by a Novel Mesoporous Niobium Phosphate Supported Ruthenium Bifunctional Catalyst. Applied Catalysis A: General, 459, 52-58.
https://doi.org/10.1016/j.apcata.2013.03.047
[28]  Shao, Y., Xia, Q., Dong, L., Liu, X., Han, X., Parker, S.F. and Wang, Y. (2017) Selective Production of Arenes via Direct Lignin Upgrading Over a Niobium-Based Catalyst. Nature Communications, 8, Article No. 16104.
https://doi.org/10.1038/ncomms16104
[29]  Qi, L. (2017) Direct Conversion of Lignin into Arene Products Catalyzed by a Niobium-Based Material. Science Bulletin, 62, 1231-1232.
https://doi.org/10.1016/j.scib.2017.09.003
[30]  Dong, L., Yin, L.L., Xia, Q., Liu, X., Gong, X.Q. and Wang, Y. (2018) Size-Dependent Catalytic Performance of Ruthenium Nanoparticles in the Hydrogenolysis of a β-O-4 Lignin Model Compound. Catalysis Science & Technology, 8, 735-745.
https://doi.org/10.1039/C7CY02014G
[31]  Dong, L., Lin, L., Han, X., Si, X., Liu, X., Guo, Y. and Wang, Y. (2019) Breaking the Limit of Lignin Monomer Production via Cleavage of Interunit Carbon–Carbon Linkages. Chem, 5, 1521-1536.
https://doi.org/10.1016/j.chempr.2019.03.007
[32]  Dong, L., Xin, Y., Liu, X., Guo, Y., Pao, C.W., Chen, J.L. and Wang, Y. (2019) Selective Hydrodeoxygenation of Lignin Oil to Valuable Phenolics over Au/Nb2O5 in Water. Green Chemistry, 21, 3081-3090.
https://doi.org/10.1039/C9GC00327D

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413