全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于正负磁极子相互作用的统一相位场论与NASA天文观测数据分析
Unified Phase Field Theory Based on the Interaction of Positive and Negative Magnetic Poles and NASA Astronomical Observation Data Analysis

DOI: 10.12677/MP.2022.121002, PP. 12-30

Keywords: 大统一理论,天体相互作用,行星近日点进动,恒星演化,暗物质与暗能量
Grand Unified Theories
, Celestial Interaction, Perihelion Precession of Planetary, Stellar Evolution, Dark Matter and Dark Energy

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文假设基本粒子是由正负磁极子相互作用构成的自旋梯度磁极子场。星系核、恒星核、行星核及其自旋梯度磁极子场是由相应的高能核粒子或核轴粒子构成的。暗物质是指星系核粒子、恒星核粒子、行星核粒子和负性磁极子。暗能量是指星系核、恒星核、行星核的自旋力和高密度磁极子场的膨胀力。本文论述了引力、电磁力、强力和弱力,皆因正负磁极子相互作用而产生。核粒子的正性磁极子环同轴自旋的结合力是强力,核粒子的外层正性磁极子环的衰变力是弱力,恒星(或行星)梯度磁极子场在引力场相应轨道上的自旋力是电磁力(或动能),星系核、恒星核、行星核对梯度磁极子场(引力场)的磁极子的凝聚力是引力。本文试图论述基于正负磁极子相互作用的统一相位场论,运用统一相位场曲率张量方程解释宇宙中引力、电磁力、强力和弱力的统一,并以太阳系与银河系相互作用、行星与太阳系相互作用以及行星近日点进动的天文观测数据进行检验。NASA天文观测数据与相位场曲率张量方程计算数据非常吻合;微分几何变量与物理变量协变;行星与太阳相互作用的爱因斯坦质能方程的拉格朗日函数、基于相对论的薛定谔粒子微分运动波函数的拉格朗日函数、杨-Mills规范场方程的拉格朗日密度和曲率张量方程的行星相位差动量–能量张量是完全吻合的。这些证明统一相位场论符合宇宙物理实在。
This article assumes that the elementary particle is a spin gradient magnetic pole field formed by the interaction of positive and negative magnetic poles. The galaxy nuclear, stellar nuclear, plane-tary nuclear and their spin gradient magnetic pole field are composed of the corresponding high- energy nuclear particle or nuclear axis particle. Dark matter refers to the galaxy nuclear particle, stellar nuclear particle, planetary nuclear particle and negative magnetic pole. Dark energy refers to the spin forces of the galaxy nuclear, stellar nuclear, planetary nuclear, and the expansion forces of high-density negative magnetic pole field. This article discusses that the gravitational forces, electromagnetic forces, strong forces and weak forces are all produced by the interaction of positive and negative magnetic poles. The binding forces of the positive magnetic poles ring coaxial spin of the nuclear particle is the strong forces, the decay forces of outer layer positive magnetic pole ring of the nuclear particle is the weak forces, the spin forces of the stellar (or planetary) gradient magnetic pole field on the corresponding orbit of the gravitational field is the electromagnetic forces (or kinetic energy), and the cohesive forces of the galaxy nucleus, stellar nucleus, and planetary nucleus to the magnetic pole of the gradient magnetic poles field (gravitational field) is the gravitational forces. This article attempts to discuss the unified phase field theory based on the interaction of positive and negative magnetic poles, and uses the curvature tensor equation of unified phase field to explains the unification of the gravitational force, electromagnetic force, strong force and weak force in the universe, and is verified by the astronomical observation data of the interactions be-tween the solar system and the Milky Way, the interactions between the planets and the solar system, the planetary perihelion precession. The NASA astronomical observation data is completely consistent with the calculated data of the

References

[1]  Einsteinm, A. (1916) The Foundation of the General Theory of Relativity. Annalen der Physik, 354, 769-822.
https://doi.org/10.1002/andp.19163540702
[2]  Einstein, A. (1917) Cosmological Considerations in the General Theory of Relativity. Sitzungsberichte der Preu?ischen Akademie der Wissenschaften Berlin, 142-152.
[3]  Friedmann, A. (1922) über die krümmung des raumes. Zeitschrift für Physik, 10, 377-386.
https://doi.org/10.1007/BF01332580
[4]  Friedmann, A. (1924) On the Possibility of a World with Constant Neg-ative Curvature of Space. Zeitschrift für Physik, 21, 326-332.
https://doi.org/10.1007/BF01328280
[5]  Lema?tre, G. (1931) A Homogeneous Universe of Constant Mass and Increasing Radius Accounting for the Radial Velocity of Ex-tra-Galactic Nebulae. Monthly Notices of the Royal Astronomical Society, 91, 483.
https://doi.org/10.1093/mnras/91.5.483
[6]  Lema?tre, G. (1931) The Beginning of the World from the Point of View of Quantum Theory. Nature, 127, Article No. 706.
https://doi.org/10.1038/127706b0
[7]  Hubble, E. (1929) A Relation between Distance and Radial Velocity among Extra-Galactic Nebulae. Proceedings of the National Academy of Sciences, 15, 168-173.
https://doi.org/10.1073/pnas.15.3.168
[8]  Alpher, R.A., Bethe, H. and Gamow, G. (1948) The Origin of Chemical Elements. Physical Review, 73, 803-804.
https://doi.org/10.1103/PhysRev.73.803
[9]  Alpher, R.A. and Herman, R.C. (1948) On the Relative Abundance of the Elements. Physical Review, 74, 1737-1742.
https://doi.org/10.1103/PhysRev.74.1737
[10]  Penzias, A.A. and Wilson, R.W. (1965) A Measurement of Excess Antenna Temperature at 4080 Mc/s. The Astrophysical Journal, 142, 419-421.
https://doi.org/10.1086/148307
[11]  Mather, J.C., et al. (1990) A Preliminary Measurement of the Cosmic Micro-wave Background Spectrum by the Cosmic Background Explorer (COBE) Satellite. The Astrophysical Journal, 354, L37.
https://doi.org/10.1086/185717
[12]  Smoot, G.F., et al. (1992) Structure in the COBE Differential Microwave Ra-diometer First Year Maps. The Astrophysical Journal, 396, 21-25.
[13]  Aghanim, N., et al. (2018) Planck 2018 Results. VI. Cosmo Logical Parameters.
[14]  Phillips, M.M. (1993) The Absolute Magnitudes of Type IA Supernovae. The As-trophysical Journal, 413, L105-L108.
https://doi.org/10.1086/186970
[15]  Hamuy, M., et al. (1995) A Hubble Diagram of Distant Type 1a Supernovae. The Astrophysical Journal, 1, 109.
https://doi.org/10.1086/117251
[16]  Perlmutter, S., et al. (1999) Measurements of Ω and from 42 High-Redshift Supernovae. The Astrophysical Journal, 517, 565-586.
https://doi.org/10.1086/307221
[17]  Risee, A.G., et al. (1998) Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. The Astrophysical Journal, 116, 1009-1038.
https://doi.org/10.1086/300499
[18]  Hubble, E. and Humason, M.L. (1931) The Velocity-Distance Relation among Extra-Galactic Nebulae. The Astrophysical Journal, 74, 43-80.
https://doi.org/10.1086/143323
[19]  Zwicky, F. (1933) Die Rotverschiebung von extragalaktischen Nebeln. Helvetica Physica Acta, 6, 110.
[20]  Zwicky, F. (1933) English and Spanish Translation of Zwicky’s the Redshift of Extragalactic Nebulae.
[21]  Smith, S. (1936) The Mass of the Virgo Cluster. The Astrophysical Journal, 83, 23-30.
https://doi.org/10.1086/143697
[22]  Abbott, B.P., et al. (2016) Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 116, Article ID: 061102.
[23]  Gilliland, R.L., Brown, T.M., Kjeldsen, H., et al. (1993) A Search for Solar-Like Oscillations in the Stars of M67 with CCD Ensemble Photometry on a Network of 4 M Telescopes. The Astronomical Journal, 106, 2441-2476.
https://doi.org/10.1086/116814
[24]  Baade, W. and Zwicky, F. (1934) On Super-Novae. Proceedings of the Na-tional Academy of Science, 20, 254-259.
https://doi.org/10.1073/pnas.20.5.254
[25]  Baade, W. and Zwicky, F. (1934) Cosmic Rays from Super-Novae. Proceedings of the National Academy of Science, 20, 259-263.
https://doi.org/10.1073/pnas.20.5.259
[26]  Hoyle, F. and Fowler, W.A. (1960) Nucleosynthesis in Supernovae. The Astrophysical Journal, 132, 565-590.
https://doi.org/10.1086/146963
[27]  Shapiro, S.L. and Teukolsky, S.A. (1983) Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects. Wiley, Hoboken.
https://doi.org/10.1002/9783527617661
[28]  Klebesadel, R.W., Strong, I.B. and Olson, R.A. (1973) Observations of Gamma-Ray Bursts of Cosmic Origin. The Astrophysical Journal, 182, L85.
https://doi.org/10.1086/181225
[29]  Riemann, B. (1854) Ueber die Hypothesen. Welche der Geometrie zu Grundeliegen. Springer, Berlin.
[30]  Riemann, B. (2016) On the Hypotheses Which Lie at the Bases of Geometry. Birkh?user (Translated by William Kingdon Clifford. Nature, Vol. VIII. Nos. 183, 184, pp. 14-17, 36, 37).
[31]  Christoffel, E.B. (1869) Ueber ein die Transformation homogener Differentialausdrücke zweiten Grades betreffendes Theorem. Journal fur die Reine und Angewandte Mathematik, 1869, 241-245.
https://doi.org/10.1515/crll.1869.70.241
[32]  Levi-Civita, M.T. (1916) Nozione di parallelismo in una varieta qualunque e conseguente specificazione geometrica della curvatura Riemanniana. Rendiconti del Circolo Matematico di Palermo (1884-1940), 42, 173-204.
https://doi.org/10.1007/BF03014898
[33]  Einstein, A. (1915) Erklarung der Perihelionbewegung der Merkur aus der allgemeinen Relativitatstheorie. Sitzungsberichte der Preussischen Akademie der Wissenschaften, 47, 831-839.
[34]  Gauss, C.F. (1828) Disquisitiones generales circa superficies curvas. Vol. 1, Typis Dieterichianis.
[35]  Ricci, M.M.G. and Levi-Civita, T. (1900) Méthodes de calcul différentiel absolu et leurs applications. Mathematische Annalen, 54, 125-201.
https://doi.org/10.1007/BF01454201
[36]  Ricci, M.M.G. (1886) Sui parametri e gli invarianti delle forme quadratiche differenziali. Annali di Matematica Pura ed Applicata, 14, 1-11.
https://doi.org/10.1007/BF02420723
[37]  Yang, C.N. and Mills, R.L. (1954) Isotopic Spin Conservation and Gen-eralized Gauge Invariance. The Physical Review, 95, 631.
[38]  Wu, X.J. and Wu, X. (2018) Particle Wave Function and Experimental Analysis Based on Relativity Theory. Modern Phyysics, 8, 185-197.
https://doi.org/10.12677/MP.2018.84022
[39]  Pe?arrubia, J., Ma, Y.-Z., Walker, M.G. and McConnachie, A. (2014) A Dynamical Model of the Local Cosmic Expansion. MNRAS, 443, 2204-2222.
https://doi.org/10.1093/mnras/stu879
[40]  The Milky Way Galaxy. https://solarsystem.nasa.gov/resources/285/the-milky-way-galaxy/?category=solar-system_beyond
[41]  Planet Compare. https://solarsystem.nasa.gov/planet-compare
[42]  Einstein, A. (1915) Explanation of the Perihelion Motion of Mercury from the General Theory of Relativity. The Collected Papers of Albert Einstein, Vol. 6, Princeton University, Princeton, 112-116.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413