全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Smart Grid  2022 

自监督表示学习算法的电力导线故障识别
Power Line Fault Identification Based on Self-Supervised Representation Learning Algorithm

DOI: 10.12677/SG.2022.121002, PP. 9-15

Keywords: 电力导线,深度学习,输电线路,自监督表示学习算法
Power Wire
, Deep Learning, Transmission Line, Self-Supervised Representation Learning Algorithm

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着人工智能技术的发展和进步,我们日常生活的各个方面现在都发生了巨大的变革,尤其是卷积神经网络在输电线路中电力导线故障检测中的应用,极大程度上消除了输电安全隐患,保障了人民生活用电,但是常规卷积神经网络应用于视觉任务需要大量的训练数据,而输电线路中某些故障极为稀缺,收集与标记这些训练数据要消耗巨大的人力、物力。基于此本文提出利用自监督表示学习算法应用于输电线路中电力导线的故障分类识别任务,以缓解数据采集与标注困难的问题。自监督表示学习算法可从未标记样本中进行学习,不需要负采样,有更高的训练效率,在实验中,将自监督表示学习算法与其他基线方法进行比较,其表现优异,在电线损坏分类与识别任务中,能够达到0.87的平均精度,表明了该算法的有效性与实用性。
With the development and progress of artificial intelligence technology, all aspects of our daily life have undergone tremendous changes, especially the application of convolutional neural networks in the fault detection of power conductors in power transmission lines, which has greatly eliminated power transmission. Potential safety hazards ensure people’s electricity consumption, but the application of conventional convolutional neural networks to visual tasks requires a lot of training data, and certain defects in the transmission line are extremely scarce. Collecting and marking these training data consumes huge manpower and material resources. Based on this, this paper proposes to apply self-supervised representation learning algorithm to the fault classification and recognition task of power conductors in transmission lines to alleviate the problem of data labeling difficulties. The self-supervised representation learning algorithm can learn from unlabeled samples and does not require negative sampling. It has higher training efficiency. In the experiment, the self-supervised representation learning algorithm is compared with other baseline methods and its performance is excellent. In the task of classification and identification of wire damage, the average accuracy can reach 0.87, which shows the effectiveness and practicability of the algorithm.

References

[1]  Chesnokov, A., Mikhailov, V. and Dolmatov, I. (2019) Evaluation of Adverse Factors Acting on a Pre-Stressed Wire Rope Structure by Means of Artificial Neural Network. 2019 1st International Conference on Control Systems, Mathematical Modelling, Automation and Energy Efficiency (SUMMA), Lipetsk, 20-22 November 2019, 500-504.
https://doi.org/10.1109/SUMMA48161.2019.8947494
[2]  Gonzalez-Jimenez, D., del-Olmo, J., Poza, J., Garramiola, F. and Sarasola, I. (2021) Machine Learning-Based Fault Detection and Diagnosis of Faulty Power Connections of Induction Machines. Energies, 14, 4886.
https://doi.org/10.3390/en14164886
[3]  范毅, 谢俊, 杜泽明, 等. 小波变换在电缆故障定位中的应用[J]. 高电压技术, 2000, 26(4): 9-10.
[4]  Cuartas, M., Ruiz, E., Ferre?o, D., Setién, J., Arroyo, V. and Gutiérrez-Solana, F. (2021) Machine Learning Algorithms for the Prediction of Non-Metallic Inclusions in Steel Wires for Tire Reinforcement. Journal of Intelligent Manufacturing, 32, 1739-1751.
https://doi.org/10.1007/s10845-020-01623-9
[5]  吕志宁. 输电线路常见故障分析与检测方法综述[J]. 自动化与仪器仪表, 2020(1): 161-164+168.
[6]  张仕民, 雷泽宇, 刘意, 杨蔚, 赵强, 杨生兰, 徐鹏. 基于AI的无人机电网智能巡检方案研析[J]. 四川电力技术, 2019, 42(3): 90-94.
[7]  王永昆, 王栋, 孙永杰, 李波. 输电线路无人机巡检应用与展望[J]. 电工技术, 2020(1): 76-77.
[8]  王万国, 张晶晶, 韩军, 等. 基于无人机图像的输电线断股与异物缺陷检测方法[J]. 计算机应用, 2015, 35(8): 2404-2408.
[9]  李延超, 肖甫, 陈志, 李博. 自适应主动半监督学习方法[J]. 软件学报, 2020, 31(12): 3808-3822.
[10]  Chakraborty, S., Gosthipaty, A.R. and Paul, S. (2020) G-SimCLR: Self-Supervised Contrastive Learning with Guided Projection via Pseudo Labelling. 2020 International Conference on Data Mining Workshops (ICDMW), Sorrento, 17-20 November 2020, 912-916.
https://doi.org/10.1109/ICDMW51313.2020.00131
[11]  刘金海, 赵贺, 神祥凯, 等. 基于漏磁内检测的自监督缺陷检测方法[J]. 仪器仪表学报, 2020(9): 180-187.
[12]  Cai, Z. and Vasconcelos, N. (2017) Cascade R-CNN: Delving into High Quality Object Detection.
https://doi.org/10.1109/CVPR.2018.00644
[13]  Lu, X., Li, B., Yue, Y., et al. (2019) Grid R-CNN plus: Faster and Better.
https://doi.org/10.1109/CVPR.2019.00754
[14]  Huang, H., Feng, Y., Zhou, M., et al. (2020) Receptive Field Fusion RetinaNet for Object Detection. Journal of Circuits, Systems and Computers, 30, Article ID: 2150184.
https://doi.org/10.1142/S021812662150184X
[15]  Ren, S., He, K., Girshick, R., et al. (2017) Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis & Machine Intelligence, 39, 1137-1149.
https://doi.org/10.1109/TPAMI.2016.2577031
[16]  Laina, I., Rupprecht, C., Belagiannis, V., et al. (2016) Deeper Depth Prediction with Fully Convolutional Residual Networks. 4th IEEE International Conference on 3d Vision, Stanford, 25-28 October 2016, 239-248.
https://doi.org/10.1109/3DV.2016.32
[17]  Jia, D., Wei, D., Socher, R., et al. (2009) ImageNet: A Large-Scale Hierarchical Image Database. Proceedings of IEEE Computer Vision & Pattern Recognition, Miami, 20-25 June 2009, 248-255.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413