全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Therapeutic Effects of Myriocin in Experimental Alcohol-Related Neurobehavioral Dysfunction and Frontal Lobe White Matter Biochemical Pathology

DOI: 10.4236/jbbs.2022.122003, PP. 23-42

Keywords: Adolescence, Alcohol, Behavior, Binge Drinking, Brain Atrophy, Myriocin, Neurodegeneration, Rat, Sulfatide, White Matter

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background & Objective: Chronic excessive alcohol consumption causes white matter degeneration with myelin loss and impaired neuronal conductivity. Subsequent rarefaction of myelin accounts for the sustained deficits in cognition, learning, and memory. Correspondingly, chronic heavy or repeated binge alcohol exposures in humans and experimental models alter myelin lipid composition leading to build-up of ceramides which can be neurotoxic and broadly inhibitory to brain functions. Methods: This study examined the effects of chronic + binge alcohol exposures (8 weeks) and intervention with myriocin, a ceramide inhibitor, on neurobehavioral functions (Open Field, Novel Object Recognition, and Morris Water Maze tests) and frontal lobe white matter myelin lipid biochemical pathology in an adult Long-Evans rat model. Results: The ethanol-exposed group had significant deficits in executive functions with increased indices of anxiety and impairments in spatial learning acquisition. Myriocin partially remediated these effects of ethanol while not impacting behavior in the control group. Ethanol-fed rats had significantly smaller brains with broadly reduced expression of sulfatides and reduced expression of two of the three sphingomyelins detected in frontal white matter. Myriocin partially resolved these effects corresponding with improvements in neurobehavioral function. Conclusion: Therapeutic strategies that support cerebral white matter myelin expression of sulfatide and sphingomyelin may help remediate cognitive-behavioral dysfunction following chronic heavy alcohol consumption in humans.

References

[1]  de la Monte, S.M. and Kril, J.J. (2014) Human Alcohol-Related Neuropathology. Acta Neuropathologica, 127, 71-90.
https://doi.org/10.1007/s00401-013-1233-3
[2]  Chanraud, S., Martelli, C., Delain, F., Kostogianni, N., Douaud, G., Aubin, H.J., Reynaud, M. and Martinot, J.-L. (2007) Brain Morphometry and Cognitive Performance in Detoxified Alcohol-Dependents with Preserved Psychosocial Functioning. Neuropsychopharmacology, 32, 429-438.
https://doi.org/10.1038/sj.npp.1301219
[3]  Oscar-Berman, M., Shagrin, B., Evert, D.L. and Epstein, C (1997) Impairments of Brain and Behavior: The Neurological Effects of Alcohol. Alcohol Health and Research World, 21, 65-75.
[4]  Sullivan, E.V., Rosenbloom, M.J. and Pfefferbaum, A. (2000) Pattern of Motor and Cognitive Deficits in Detoxified Alcoholic Men. Alcoholism: Clinical and Experimental Research, 24, 611-621.
https://doi.org/10.1111/j.1530-0277.2000.tb02032.x
[5]  de la Monte, S.M. (1988) Disproportionate Atrophy of Cerebral White Matter in Chronic Alcoholics. Archives of Neurology, 45, 990-992.
https://doi.org/10.1001/archneur.1988.00520330076013
[6]  Gazdzinski, S., Durazzo, T.C., Mon, A., Yeh, P.H. and Meyerhoff, D.J. (2010) Cerebral White Matter Recovery in Abstinent Alcoholics—A Multimodality Magnetic Resonance Study. Brain, 133, 1043-1053.
https://doi.org/10.1093/brain/awp343
[7]  Harper, C., Dixon, G., Sheedy, D. and Garrick, T (2003) Neuropathological Alterations in Alcoholic Brains. Studies Arising from the New South Wales Tissue Resource Centre. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 27, 951-961.
https://doi.org/10.1016/S0278-5846(03)00155-6
[8]  Kril, J.J. and Halliday, G.M. (1999) Brain Shrinkage in Alcoholics: A Decade on and What Have We Learned? Progress in Neurobiology, 58, 381-387.
https://doi.org/10.1016/S0301-0082(98)00091-4
[9]  Monnig, M.A., Tonigan, J.S., Yeo, R.A., Thoma, R.J. and McCrady, B.S (2013) White Matter Volume in Alcohol Use Disorders: A Meta-Analysis. Addiction Biology, 18, 581-592.
https://doi.org/10.1111/j.1369-1600.2012.00441.x
[10]  de la Monte, S.M., Kay, J., Yalcin, E.B., Kril, J.J., Sheedy, D. and Sutherland, G.T. (2018) Imaging Mass Spectrometry of Frontal White Matter Lipid Changes in Human Alcoholics. Alcohol, 67, 51-63.
https://doi.org/10.1016/j.alcohol.2017.08.004
[11]  Yalcin, E.B., McLean, T., Tong, M. and de la Monte, S.M. (2017) Progressive White Matter Atrophy with Altered Lipid Profiles Is Partially Reversed by Short-Term Abstinence in an Experimental Model of Alcohol-Related Neurodegeneration. Alcohol, 65, 51-62.
https://doi.org/10.1016/j.alcohol.2017.05.008
[12]  Chakraborty, M. and Jiang, X.C. (2013) Sphingomyelin and Its Role in Cellular Signaling. In: Capelluto, D., Ed., Lipid-Mediated Protein Signaling, Vol. 991, Springer, Dordrecht, 1-14.
https://doi.org/10.1007/978-94-007-6331-9_1
[13]  Ikonen, E. and Vainio, S. (2005) Lipid Microdomains and Insulin Resistance: Is There a Connection? Science’s Stke, 2005, pe3.
https://doi.org/10.1126/stke.2682005pe3
[14]  Mollinedo, F. and Gajate, C. (2015) Lipid Rafts as Major Platforms for Signaling Regulation in Cancer. Advances in Biological Regulation, 57, 130-146.
https://doi.org/10.1016/j.jbior.2014.10.003
[15]  Ohanian, J. and Ohanian, V. (2001) Sphingolipids in Mammalian Cell Signalling. Cellular and Molecular Life Sciences, 58, 2053-2068.
https://doi.org/10.1007/PL00000836
[16]  Schengrund, C.L. (2010) Lipid Rafts: Keys to Neurodegeneration. Brain Research Bulletin, 82, 7-17.
https://doi.org/10.1016/j.brainresbull.2010.02.013
[17]  Yalcin, E.B. and de la Monte, S.M. (2015) Review of Matrix-Assisted Laser Desorption Ionization-Imaging Mass Spectrometry for Lipid Biochemical Histopathology. Journal of Histochemistry & Cytochemistry, 63, 762-771.
https://doi.org/10.1369/0022155415596202
[18]  Yalcin, E.B., Nunez, K., Cornett, D.S. and de la Monte, S.M. (2015) Differential Lipid Profiles in Experimental Steatohepatitis: Role for Imaging Mass Spectrometry as a Diagnostic Aid. Journal of Drug and Alcohol Research, 4, Article ID: 235928.
https://doi.org/10.4303/jdar/235928
[19]  Mencarelli, C. and Martinez-Martinez, P. (2013) Ceramide Function in the Brain: When a Slight Tilt Is Enough. Cellular and Molecular Life Sciences, 70, 181-203.
https://doi.org/10.1007/s00018-012-1038-x
[20]  Bae, M., Bandaru, V.V., Patel, N. and Haughey, N.J. (2014) Ceramide Metabolism Analysis in a Model of Binge Drinking Reveals Both Neuroprotective and Toxic Effects of Ethanol. Journal of Neurochemistry, 131, 645-654.
https://doi.org/10.1111/jnc.12834
[21]  Tong, M. and de la Monte, S.M. (2009) Mechanisms of Ceramide-Mediated Neurodegeneration. Journal of Alzheimer’s Disease, 16, 705-714.
https://doi.org/10.3233/JAD-2009-0983
[22]  Chun, J. and Brinkmann, V. (2011) A Mechanistically Novel, First Oral Therapy for Multiple Sclerosis: The Development of Fingolimod (FTY720, Gilenya). Discovery Medicine, 12, 213-228.
[23]  Zhang, Y., Li, X., Ciric, B., Ma, C.G., Gran, B., Rostami, A. and Zhang, G.X. (2017) Effect of Fingolimod on Neural Stem Cells: A Novel Mechanism and Broadened Application for Neural Repair. Molecular Therapy, 25, 401-415.
https://doi.org/10.1016/j.ymthe.2016.12.008
[24]  Zhao, Y., Shi, D., Cao, K., Wu, F., Zhu, X., Wen, S., You, Q., Zhang, K., Liu, L. and Zhou, H. (2018) Fingolimod Targets Cerebral Endothelial Activation to Block Leukocyte Recruitment in the Central Nervous System. Journal of Leukocyte Biology, 103, 107-118.
https://doi.org/10.1002/JLB.3A0717-287R
[25]  Zhang, N., Li, X., Liu, X., Cao, Y., Chen, D., Liu, X., Wang, Q., Du, J., Weng, J. and Ma, W. (2017) p21-Activated Kinase 1 Activity is Required for Histone H3 Ser(10) Phosphorylation and Chromatin Condensation in Mouse Oocyte Meiosis. Reproduction, Fertility and Development, 29, 1287-1296.
https://doi.org/10.1071/RD16026
[26]  Tong, M., Longato, L., Ramirez, T., Zabala, V., Wands, J.R. and de la Monte, S.M. (2014) Therapeutic Reversal of Chronic Alcohol-Related Steatohepatitis with the Ceramide Inhibitor Myriocin. International Journal of Experimental Pathology, 95, 49-63.
https://doi.org/10.1111/iep.12052
[27]  Bertola, A., Mathews, S., Ki, S.H., Wang, H. and Gao, B. (2013) Mouse Model of Chronic and Binge Ethanol Feeding (the, NIAAA Model). Nature Protocols, 8, 627-637.
https://doi.org/10.1038/nprot.2013.032
[28]  Bertola, A., Park, O. and Gao, B. (2013) Chronic Plus Binge Ethanol Feeding Synergistically Induces Neutrophil Infiltration and Liver Injury in Mice: A Critical Role for E-Selectin. Hepatology, 58, 1814-1823.
https://doi.org/10.1002/hep.26419
[29]  Zabala, V., Tong, M., Yu, R., Ramirez, T., Yalcin, E.B., Balbo, S., Silbermann, E., Deochand, C., Nunez, K., Hecht, S. and de la Monte, S.M. (2015) Potential Contributions of the Tobacco Nicotine-Derived Nitrosamine Ketone (NNK) in the Pathogenesis of Steatohepatitis in a Chronic Plus Binge Rat Model of Alcoholic Liver Disease. Alcohol and Alcoholism, 50, 118-131.
https://doi.org/10.1093/alcalc/agu083
[30]  Linnoila, M., Mattila, M.J. and Kitchell, B.S. (1979) Drug Interactions with Alcohol. Drugs, 18, 299-311.
https://doi.org/10.2165/00003495-197918040-00003
[31]  Lane, E.A., Guthrie, S. and Linnoila, M. (1985) Effects of Ethanol on Drug and Metabolite Pharmacokinetics. Clinical Pharmacokinetics, 10, 228-247.
https://doi.org/10.2165/00003088-198510030-00003
[32]  Linnoila, M., Lane, E.A., Guthrie, S., Parashos, I., Rudorfer, M. and Potter, W.Z. (1985) CSF, Plasma, and Urine: What Do Concomitant Measurements of Norepinephrine and Its Metabolites Mean? Psychopharmacology Bulletin, 21, 389-395.
[33]  Mao, Y., Wang, J., Zhao, Y., Wu, Y., Kwak, K.J., Chen, C.S., Byrd, J.C., Lee, R.J., Phelps, M.A., Lee, L.J. and Muthusamy, N. (2014) A Novel Liposomal Formulation of, FTY720 (Fingolimod) for Promising Enhanced Targeted Delivery. Nanomedicine: Nanotechnology, Biology and Medicine, 10, 393-400.
https://doi.org/10.1016/j.nano.2013.08.001
[34]  Xie, Z., Chen, M., Goswami, S., Mani, R., Wang, D., Kulp, S.K., Coss, C.C., Schaaf, L.J., Cui, F., Byrd, J.C., Jennings, R.N., Schober, K.K., Freed, C., Lewis, S., Malbrue, R., Muthusamy, N., Bennett, C., Kisseberth, W.C. and Phelps, M.A. (2020) Pharmacokinetics and Tolerability of the Novel Non-Immunosuppressive Fingolimod Derivative, OSU-2S, in Dogs and Comparisons with Data in Mice and Rats. The AAPS Journal, 22, Article No. 92.
https://doi.org/10.1208/s12248-020-00474-9
[35]  Jeltsch, H., Cassel, J.C., Jackisch, R., Neufang, B., Greene, P.L., Kelche, C., Hertting, G. and Will, B. (1994) Lesions of Supracallosal or Infracallosal Hippocampal Pathways in the Rat: Behavioral, Neurochemical, and Histochemical Effects. Behavioral and Neural Biology, 62, 121-133.
https://doi.org/10.1016/S0163-1047(05)80033-0
[36]  Brenes, J.C., Padilla, M. and Fornaguera, J. (2009) A Detailed Analysis of Open-Field Habituation and Behavioral and Neurochemical Antidepressant-Like Effects in Postweaning Enriched Rats. Behavioural Brain Research, 197, 125-137.
https://doi.org/10.1016/j.bbr.2008.08.014
[37]  Wilcoxon, J.S., Kuo, A.G., Disterhoft, J.F. and Redei, E.E. (2005) Behavioral Deficits Associated with Fetal Alcohol Exposure Are Reversed by Prenatal Thyroid Hormone Treatment: A Role for Maternal Thyroid Hormone Deficiency in, FAE. Molecular Psychiatry, 10, 961-971.
https://doi.org/10.1038/sj.mp.4001694
[38]  Huang, T.-N. and Hsueh, Y.-P. (2014) Novel Object Recognition for Studying Memory in Mice. Bio-Protocol, 4, Article No. e1249.
https://doi.org/10.21769/BioProtoc.1249
[39]  de la Monte, S.M., Tong, M., Lester-Coll, N., Plater Jr., M. and Wands, J.R. (2006) Therapeutic Rescue of Neurodegeneration in Experimental Type 3 Diabetes: Relevance to Alzheimer’s Disease. Journal of Alzheimer’s Disease, 10, 89-109.
https://doi.org/10.3233/JAD-2006-10113
[40]  Yalcin, E.B., Nunez, K., Tong, M., Cornett, S.D. and de la Monte, S.M. (2015) Imaging Mass Spectrometry Visualization of Lipids in White Matter Degeneration Induced by Ethanol, Tobacco Nitrosamine (NNK) or Both Exposures in Rats. Alcoholism: Clinical and Experimental Research, 39, 2324-2333.
https://doi.org/10.1111/acer.12909
[41]  Angel, P.M., Spraggins, J.M., Baldwin, H.S. and Caprioli, R. (2012) Enhanced Sensitivity for High Spatial Resolution Lipid Analysis by Negative Ion Mode Matrix Assisted Laser Desorption Ionization Imaging Mass Spectrometry. Analytical Chemistry, 84, 1557-1564.
https://doi.org/10.1021/ac202383m
[42]  Jackson, S.N., Wang, H.Y. and Woods, A.S. (2007) In Situ Structural Characterization of Glycerophospholipids and Sulfatides in Brain Tissue Using, MALDI-MS/MS. Journal of the American Society for Mass Spectrometry, 18, 17-26.
https://doi.org/10.1016/j.jasms.2006.08.015
[43]  Lohmann, C., Schachmann, E., Dandekar, T., Villmann, C. and Becker, C.M. (2010) Developmental Profiling by Mass Spectrometry of Phosphocholine Containing Phospholipids in the Rat Nervous System Reveals Temporo-Spatial Gradients. Journal of Neurochemistry, 114, 1119-1134.
https://doi.org/10.1111/j.1471-4159.2010.06836.x
[44]  Berry, K.A., Hankin, J.A., Barkley, R.M., Spraggins, J.M., Caprioli, R.M. and Murphy, R.C. (2011) MALDI Imaging of Lipid Biochemistry in Tissues by Mass Spectrometry. Chemical Reviews, 111, 6491-6512.
https://doi.org/10.1021/cr200280p
[45]  Dreisewerd, K., Lemaire, R., Pohlentz, G., Salzet, M., Wisztorski, M., Berkenkamp, S. and Fournier, I. (2007) Molecular Profiling of Native and Matrix-Coated Tissue slices from Rat Brain by Infrared and Ultraviolet Laser Desorption/Ionization Orthogonal Time-of-Flight Mass Spectrometry. Analytical Chemistry, 79, 2463-2471.
https://doi.org/10.1021/ac061768q
[46]  Eckhardt, M., Hedayati, K.K., Pitsch, J., Lullmann-Rauch, R., Beck, H., Fewou, S.N. and Gieselmann, V. (2007) Sulfatide Storage in Neurons Causes Hyperexcitability and Axonal Degeneration in a Mouse Model of Metachromatic Leukodystrophy. Journal of Neuroscience, 27, 9009-9021.
https://doi.org/10.1523/JNEUROSCI.2329-07.2007
[47]  Fernandez-Lima, F.A., Post, J., DeBord, J.D., Eller, M.J., Verkhoturov, S.V., Della-Negra, S., Woods, A.S. and Schweikert, E.A. (2011) Analysis of Native Biological Surfaces Using a 100 kV Massive Gold Cluster Source. Analytical Chemistry, 83, 8448-8453.
https://doi.org/10.1021/ac201481r
[48]  Gode, D. and Volmer, D.A. (2013) Lipid Imaging by Mass Spectrometry—A Review. Analyst, 138, 1289-1315.
https://doi.org/10.1039/c2an36337b
[49]  Hsu, F.F. and Turk, J. (2000) Characterization of Phosphatidylinositol, Phosphatidylinositol-4-Phosphate, and Phosphatidylinositol-4,5-Bisphosphate by Electrospray Ionization Tandem Mass Spectrometry: A Mechanistic Study. Journal of the American Society for Mass Spectrometry, 11, 986-999.
https://doi.org/10.1016/S1044-0305(00)00172-0
[50]  Shanta, S.R., Zhou, L.H., Park, Y.S., Kim, Y.H., Kim, Y. and Kim, K.P. (2011) Binary Matrix for, MALDI Imaging Mass Spectrometry of Phospholipids in Both Ion Modes. Analytical Chemistry, 83, 1252-1259.
https://doi.org/10.1021/ac1029659
[51]  Bergkvist, A., Rusnakova, V., Sindelka, R., Garda, J.M., Sjogreen, B., Lindh, D., Forootan, A. and Kubista, M. (2010) Gene Expression Profiling—Clusters of Possibilities. Methods, 50, 323-335.
https://doi.org/10.1016/j.ymeth.2010.01.009
[52]  Mann, K., Ackermann, K., Croissant, B., Mundle, G., Nakovics, H. and Diehl, A. (2005) Neuroimaging of Gender Differences in Alcohol Dependence: Are Women More Vulnerable? Alcoholism: Clinical and Experimental Research, 29, 896-901.
https://doi.org/10.1097/01.ALC.0000164376.69978.6B
[53]  Paul, C.A., Au, R., Fredman, L., Massaro, J.M., Seshadri, S., Decarli, C. and Wolf, P.A. (2008) Association of Alcohol Consumption with Brain Volume in the Framingham Study. Archives of Neurology, 65, 1363-1367.
https://doi.org/10.1001/archneur.65.10.1363
[54]  Gerlai, R. (2001) Behavioral Tests of Hippocampal Function: Simple Paradigms Complex Problems. Behavioural Brain Research, 125, 269-277.
https://doi.org/10.1016/S0166-4328(01)00296-0
[55]  Au, R., Massaro, J.M., Wolf, P.A., Young, M.E., Beiser, A., Seshadri, S., D’Agostino, R.B. and DeCarli, C. (2006) Association of White Matter Hyperintensity Volume with Decreased Cognitive Functioning: The Framingham Heart Study. Archives of Neurolog, 63, 246-250.
https://doi.org/10.1001/archneur.63.2.246
[56]  Salat, D.H., Tuch, D.S., van der Kouwe, A.J., Greve, D.N., Pappu, V., Lee, S.Y., Hevelone, N.D., Zaleta, A.K., Growdon, J.H., Corkin, S., Fischl, B. and Rosas, H.D. (2010) White Matter Pathology Isolates the Hippocampal Formation in Alzheimer’s Disease. Neurobiology of Aging, 31, 244-256.
https://doi.org/10.1016/j.neurobiolaging.2008.03.013
[57]  Suenaga J, Hu, X., Pu, H., Shi, Y., Hassan, S.H., Xu, M., Leak, R.K., Stetler, R.A., Gao, Y. and Chen, J. (2015) White Matter Injury and Microglia/Macrophage Polarization Are Strongly Linked with Age-Related Long-Term Deficits in Neurological Function after Stroke. Experimental Neurology, 272, 109-119.
https://doi.org/10.1016/j.expneurol.2015.03.021
[58]  Osuchowski, M.F., Johnson, V.J., He, Q. and Sharma, R.P. (2004) Myriocin, a Serine Palmitoyltransferase Inhibitor, Alters Regional Brain Neurotransmitter Levels without Concurrent Inhibition of the Brain Sphingolipid Biosynthesis in Mice. Toxicology Letters, 147, 87-94.
https://doi.org/10.1016/j.toxlet.2003.10.016
[59]  Ishizuka, I. (1997) Chemistry and Functional Distribution of Sulfoglycolipids. Progress in Lipid Research, 36, 245-319.
https://doi.org/10.1016/S0163-7827(97)00011-8
[60]  Saito, M., Saito, M., Cooper, T.B. and Vadasz, C. (2005) Ethanol-Induced Changes in the Content of Triglycerides, Ceramides, and Glucosylceramides in Cultured Neurons. Alcoholism: Clinical and Experimental Research, 29, 1374-1383.
https://doi.org/10.1097/01.alc.0000175011.22307.61
[61]  Tong, M., Leao, R., Vimbela, G.V., Yalcin, E.B., Kay, J., Krotow, A. and de la Monte, S.M. (2017) Altered Temporal Lobe White Matter Lipid Ion Profiles in an Experimental Model of Sporadic Alzheimer’s Disease. Molecular and Cellular Neuroscience, 82, 23-34.
https://doi.org/10.1016/j.mcn.2017.04.010
[62]  Han, X., Holtzman, M.D., McKeel Jr., D.W., Kelley, J. and Morris, J.C. (2002) Substantial Sulfatide Deficiency and Ceramide Elevation in Very Early Alzheimer’s Disease: Potential Role in Disease Pathogenesis. Journal of Neurochemistry, 82, 809-818.
https://doi.org/10.1046/j.1471-4159.2002.00997.x
[63]  Saito, M. and Saito, M. (2013) Involvement of Sphingolipids in Ethanol Neurotoxicity in the Developing Brain. Brain Sciences, 3, 670-703.
https://doi.org/10.3390/brainsci3020670
[64]  Crews, F.T. (2008) Alcohol-Related Neurodegeneration and Recovery: Mechanisms from Animal Models. Alcohol Research & Health, 31, 377-388.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413