全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Population Dynamics of Colonizing Fauna and Its Effect on Growth Rates of the Farmed Red Alga Alsidium triquetrum (S. G. Gmelin) Trevisan

DOI: 10.4236/ns.2022.142005, PP. 42-55

Keywords: Cultivation, Epifauna, Macroalgae, Macroinvertebrates, Seaweed Mariculture

Full-Text   Cite this paper   Add to My Lib

Abstract:

Herbivores can drastically alter the morphology of macroalgae by directly consuming tissue and by inflicting structural wounds. Macroalgae host abundant and diverse epibiont communities, the dynamics of which tend to be mostly unknown in space and time. As the cultivation of macroalgae gains momentum worldwide, it is key to measure how epibionts could affect algal performance. We examined the epibiont community associated with farmed Alsidium triquetrum, a red macroalga with growing pharmacological interest. Measurements were conducted over two independent 60-day periods, one in summer and one in winter. Epibionts showed different patterns of succession in both seasons. Crustaceans, mainly amphipods, showed the highest overall density, with deleterious effects on daily growth rates of A. triquetrum in winter. Adverse effects as a function of epibionts were not detected in summer. A. triquetrum is a perennial alga. However, its performance as a crop in the nearshore can be significantly affected by the epibiont community structure that persists in winter. Amphipods and ascoglossan molluscs were risk factors in the mariculture of this agarophyte. In winter, they can destroy plants when they reach more than five individuals per gram of fresh biomass. Results highlight that commercial farming of A. triquetrum would be successful if grown throughout the summer.

References

[1]  Buschmann, A.H., Camus, C., Infante, J., Neori, A., Israel, A., Hernández-González, M.C., Pereda, S.V., Gómez-Pinchetti, J.L., Golberg, A., Tadmor-Shalev, N. and Critchley, A.T. (2017) Seaweed Production: Overview of the Global State of Exploitation, Farming and Emerging Research Activity. European Journal of Phycology, 52, 391-406.
https://doi.org/10.1080/09670262.2017.1365175
[2]  Garbary, D.J. (2017) Harvesting Ascophyllum nodosum (Phaeophyceae) Reduces the Abundance of Its Host-Specific Epiphyte Vertebrata lanosa (Rhodophyta). Botanica Marina, 60, 297-301.
https://doi.org/10.1515/bot-2016-0074
[3]  Vidal, A., Fallarero, A., Silva, E., De Oliveira, S., De Lima, A., Pavan, R., Vuorela, P. and Mancini-Filho, J. (2006) Chemical Composition and Antioxidant Activity of the Red Algae Bryothamnion triquetrum (S. G. Gmelin) Howe). Brazilian Journal of Pharmaceutical Sciences, 42, 589-600.
https://doi.org/10.1590/S1516-93322006000400015
[4]  Areces, A.J., Cabrera, R. and Díaz-Larrea, J. (2020) Biotecnología de agarófitas del género Alsidium C. Agardh. Editorial Académica Española, 1-127.
[5]  Cabrera, R., Areces, A., Díaz-Larrea, J., García, L. and Cruz-Aviña, J. (2021) Influence of the Macronutrients N, P and K on the Agarophyte Alsidium triquetrum (S. G. Gmelin) Trevisan, during Experimental Culture. American Journal of Plant Sciences, 12, 573-585.
https://doi.org/10.4236/ajps.2021.124038
[6]  Sahu, S.K., Ingle, K.N. and Mantri, V.A. (2020) Epiphytism in Seaweed Farming: Causes, Status, and Implications. In: Gothandam, K., Ranjan, S., Dasgupta, N. and Lichtfouse, E., Eds., Environmental Biotechnology, Vol. 1, Environmental Chemistry for a Sustainable World, Vol. 44, Springer, Cham, 228-242.
https://doi.org/10.1007/978-3-030-38192-9_9
[7]  Peteiro, C. and Freire, O. (2013) Epiphytism on Blades of the Edible Kelps Undaria pinnatifida and Saccharina latissima Farmed under Different Abiotic Conditions. Journal of the World Aquaculture Society, 44, 706-715.
https://doi.org/10.1111/jwas.12065
[8]  Ashwini, K., Soundarapandian, P., Jagan, K., Anatharaman, P., Kannan, D., Sanjeev, K., Thirunavukkarasu, P. and Arun, K. (2014) Associated Fauna in Cultured Seaweed Kappaphycus alvarezii of Vellar Estuary (South East Coast of India). International Journal of Marine Science, 3, 37-43.
[9]  Guerra-García, J. M., Cabezas, M.P., Baeza-Rojano, E., Izquierdo, D., Corzo, J., Ros, M., Sánchez, J.A., Dugo-Cota, A., Flores-León, A.M. and Soler-Hurtado, M.M. (2011) Abundance Patterns of Macrofauna Associated to Marine Macroalgae along the Iberian Peninsula. Zoologica Baetica, 22, 3-17.
[10]  Haavisto, F. (2016) Macroalgal Defenses against Herbivory: Causes and Consequences of Intraspecific Variation. Volume 319 of Turun Yliopiston Julkaisuja. Ser A 2.
[11]  Denny, M. and Gaylord, B. (2002) The Mechanics of Wave-Swept Algae. Journal of Experimental Biology, 205, 1355-1362.
https://doi.org/10.1242/jeb.205.10.1355
[12]  Stewart, H.L. and Carpenter, R.C. (2003) The Effects of Morphology and Water Flow on Photosynthesis of Marine Macroalgae. Ecology, 84, 2999-3012.
https://doi.org/10.1890/02-0092
[13]  Nieder, C., Liao, C.P., Chen, C.A. and Liu, S.L. (2019) Filamentous Calcareous Alga Provides Substrate for Coral-Competitive Macroalgae in the Degraded Lagoon of Dongsha Atoll, Taiwan. PLoS ONE, 14, e0200864.
https://doi.org/10.1371/journal.pone.0200864
[14]  Aoki, M. and Kikuchi, T. (1990) Habitat Adaptations of Caprellid Amphipods and the Importance of Epiphytic Secondary Habitats in the Sargassum patens Bed in Amakusa, Southern Japan. Publications from the Amakusa Marine Biological Laboratory, Kyushu University, 10, 123-133.
[15]  Gestoso, I., Olabarria, C. and Troncoso, J.S. (2010) Variability of Epifaunal Assemblages Associated with Native and Invasive Macroalgae. Marine and Freshwater Research, 61, 724-731.
https://doi.org/10.1071/MF09251
[16]  Veiga, P., Rubal, M. and Sousa-Pinto, I. (2014) Structural Complexity of Macroalgae Influences Epifaunal Assemblages Associated with Native and Invasive Species. Marine Environmental Research, 101, 115-123.
https://doi.org/10.1016/j.marenvres.2014.09.007
[17]  Wahl, M., Goecke, F., Labes, A., Dobretsov, S. and Weinberger, F. (2012) The Second Skin: Ecological Role of Epibiotic Biofilms on Marine Organisms. Frontiers in Microbiology, 3, Article No. 292.
https://doi.org/10.3389/fmicb.2012.00292
[18]  Hepburn, C.D. and Hurd, C.L. (2005) A Conditional Mutualism between the Giant Kelp Macrocystis pyrifera and Colonial Epifauna. Marine Ecology Progress Series, 302, 37-48.
https://doi.org/10.3354/meps302037
[19]  Newcombe, E. and Taylor, R. (2010) Trophic Cascade in a Seaweed-Epifauna-Fish Food Chain. Marine Ecology Progress Series, 408, 161-167.
https://doi.org/10.3354/meps08589
[20]  Endo, H., Sato, Y., Kaneko, K., Takahashi, D., Nagasawa, K., Okumura, Y. and Agatsuma, Y. (2020) Ocean Warming Combined with Nutrient Enrichment Increases the Risk of Herbivory during Cultivation of the Marine Macroalga Undaria pinnatifida. ICES Journal Marine Science, 78, 402-409.
https://doi.org/10.1093/icesjms/fsaa069
[21]  Luiz, H.A.C., Brito da Matta, C.B., de Araújo, M.V., Barbosa-Filho, J.M., de Lira, D.P. and de Oliveira Santos, B.V. (2012) Antinociceptive and Anti-Inflammatory Activities of Crude Methanolic Extract of Red Alga Bryothamnion triquetrum. Marine Drugs, 10, 1977-1992.
https://doi.org/10.3390/md10091977
[22]  Areces, A.J. and Soberats, L.R. (1992) Optimización del cultivo in Situ de Bryothamnion triquetrum (Gmelin) Howe mediante evaluación de diversos sistemas de sujeción. Ciencias Biológicas, 18, 65-76.
https://doi.org/10.7773/cm.v18i2.892
[23]  Pielou, E.C. (1975) Ecological Diversity. John Wiley & Sons, New York, viii + 165 p.
[24]  Schulze, E.D., Beck, E., Buchmann, N., Clemen, S., Müller-Hohenstein, K. and Scherer-Lorenzen, M. (2019) Biodiversity. In: Schulze, E.D., Beck, E., Buchmann, N., Clemen, S., Müller-Hohenstein, K. and Scherer-Lorenzen, M., Eds., Plant Ecology, Springer, Berlin, 743-823.
https://doi.org/10.1007/978-3-662-56233-8
[25]  Cairns, J. and Kenneth, D. (1971) A Simple Method for the Biological Assessment of the Effects of Waste Discharges on Aquatic Bottom-Dwelling Organism. Journal Water Pollution Control Federation, 5, 755-772.
[26]  Patil, G.P. and Taillie, C. (1976) Ecological Diversity: Concepts, Indexes and Applications. Proceeding of the International Biometric Conference, Fairland, Maryland, 382-441.
[27]  Keefe, T.J. and Bergersen, E.P. (1977) A Simple Diversity Index Based on the Theory of Runs. Water Resources Bulletin, 11, 689-691.
https://doi.org/10.1016/0043-1354(77)90108-7
[28]  Sokal, R.R. and Rohlf, F.J. (1981) Biometry. Second Edition, W. H. Freeman, New York.
[29]  Yong, Y.S., Yong, W.T.L. and Anton, A. (2013) Analysis of Formulae for Determination of Seaweed Growth Rate. Journal of Applied Phycology, 25, 1831-1834.
https://doi.org/10.1007/s10811-013-0022-7
[30]  Zar, J.H. (2010) Biostatistical Analysis. Fourth Edition, Prentice Hall, Hoboken, 944 p.
[31]  Poore, A.G.B., Campbell, A.H., Coleman, R.A., Edgar, G.J., Jormalainen, V., Reynolds, P.L., Sotka, E.E., Stachowicz, J.J., Taylor, R.B., Vanderklift, M.A. and Duffy, J.E. (2012) Global Patterns in the Impact of Marine Herbivores on Benthic Primary Producers. Ecology Letters, 15, 912-922.
https://doi.org/10.1111/j.1461-0248.2012.01804.x
[32]  Rogers-Bennett, L. and Catton, C.A. (2019) Marine Heat Wave and Multiple Stressors Tip Bull Kelp Forest to Sea Urchin Barrens. Scientific Reports, 9, Article No. 15050.
https://doi.org/10.1038/s41598-019-51114-y
[33]  Areces, A.J., del Valle, R., Ibarzabal, D., Pol, J. and Hernández, L. (1992) Características generales de la mesofauna asociada a cuatro especies de macroalgas del mesolitoral rocoso cubano. Ciencias Biológicas, 25, 117-131.
[34]  Válerio-Bernardo, M.T. and Flynn, M.N. (2002) Composition and Seasonality of an Amphipod Community Associated to the Algae Bryocladia trysigera. Brazilian Journal of Biology, 62, 735-742.
https://doi.org/10.1590/S1519-69842002000400021
[35]  Duffy, J.E. and Hay, M.E. (2000) Strong Impacts of Grazing Amphipods on the Organization of a Benthic Community. Ecological Monographs, 70, 237-263.
https://doi.org/10.1890/0012-9615(2000)070[0237:SIOGAO]2.0.CO;2
[36]  Nelson, W.G. (1979) Experimental Studies of Selective Predation on Amphipods: Consequences for Amphipod Distribution and Abundance. Journal of Experimental Marine Biology and Ecology, 38, 225-245.
https://doi.org/10.1016/0022-0981(79)90069-8
[37]  Lin, S.M., Tseng, L.C., Ang, P.O., Bolton, J. and Liu, L.C. (2018) Long-Term Study on Seasonal Changes in Floristic Composition and Structure of Marine Macroalgal Communities along the Coast of Northern Taiwan, Southern East China Sea. Marine Biology, 165, 83.
https://doi.org/10.1007/s00227-018-3344-9
[38]  Scrosati, R. and Heaven, C. (2007) Spatial Trends in Community Richness, Diversity, and Evenness Across Rocky Intertidal Environmental Stress Gradients in Eastern Canada. Marine Ecology Progress Series, 342, 1-14.
https://doi.org/10.3354/meps342001
[39]  Thomsen, M.S., Stæhr, P.A., Nejrup, L. and Schiel, D.R. (2013) Effects of the Invasive Macroalgae Gracilaria vermiculophylla on Two Co-Occurring Foundation Species and Associated Invertebrates. Aquatic Invasions, 8, 133-145.
https://doi.org/10.3391/ai.2013.8.2.02
[40]  Scrosati, R.A. (2017) Community-Level Facilitation by Macroalgal Foundation Species Peaks at an Intermediate Level of Environmental Stress. Algae, 32, 41-46.
https://doi.org/10.4490/algae.2017.32.2.20
[41]  Odum, E.P. (1969) The Strategy of Ecosystem Development. Science, 164, 262-270.
https://doi.org/10.1126/science.164.3877.262
[42]  Chemello, R. and Milazzo, M. (2002) Effect of Algal Architecture on Associated Fauna: Some Evidence from Phytal Molluscs. Marine Biology, 140, 981-990.
https://doi.org/10.1007/s00227-002-0777-x
[43]  Queiroz, R.N.M. and Días, T.L.P. (2014) Mollusks Associated with Macroalgae of the Genus Gracilaria (Rhodophyta): Importance of Algal Fronds as a Microhabitat in a Hypersaline Mangrove in Northeastern Brazil. Brazilian Journal of Biology, 74, S052-S063.
https://doi.org/10.1590/1519-6984.20712
[44]  Areces, A.J., Cabrera, R. and Díaz-Larrea, J. (2022) Guía ilustrada para el cultivo in Situ de Alsidium triquetrum. Brazilian Publicações de Periódicos e Editora Ltda.
https://doi.org/10.35587/brj.ed.0001359

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413