全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Transport in Astrophysics: I. Diffusion of Solar and Galactic Cosmic Rays

DOI: 10.4236/ijaa.2022.121003, PP. 30-52

Keywords: Cosmic Rays, Particle Diffusion, Random Walks

Full-Text   Cite this paper   Add to My Lib

Abstract:

Some solutions for the diffusion phenomenon as a function of time and space are reviewed. Two new solutions of the homogeneous diffusion equation in 1D and 2D are derived in the presence of an existing fixed number of particles. The initial conditions which allow deriving a power law behavior for the energy of the cosmic rays (CR) are derived. The superposition of transient diffusive phenomena on an existing power law distribution for the energy of CR allows simulating the knee, the second knee, and the ankle.

References

[1]  Hess, V. (2018) On the Observations of the Penetrating Radiation during Seven Balloon Flights.
[2]  Andrews, M.R. (1925) High Frequency Rays of Cosmic Origin. Science, 62, 445-448.
https://doi.org/10.1126/science.62.1612.445
[3]  Wright, C.S. (1926) Cosmic Rays. Nature, 117, 54-56.
https://doi.org/10.1038/117054a0
[4]  Millikan, R.A. (1926) High Frequency Rays of Cosmic Origin. Popular Astronomy, 34, 232-338.
https://doi.org/10.1073/pnas.12.1.48
[5]  Millikan, R.A. (1926) Cosmic Rays. Scientific American, 134, 149.
https://doi.org/10.1038/scientificamerican0326-149
[6]  Parker, E.N. (1958) Cosmic-Ray Modulation by Solar Wind. Physical Review, 110, 1445-1449.
https://doi.org/10.1103/PhysRev.110.1445
[7]  Ehmert, A. (1960) On the Modulation of Primary Cosmic Ray Spectrum by Solar Activity. International Cosmic Ray Conference, Vol. 4, 142.
[8]  Dorman, L.I. (1960) On the Theory of the Modulation of Cosmic Rays by the Solar Wind. International Cosmic Ray Conference, Vol. 4, 320.
[9]  Potgieter, M.S. (2013) Solar Modulation of Cosmic Rays. Living Reviews in Solar Physics, 10, Article No. 3.
https://doi.org/10.12942/lrsp-2013-3
[10]  Miyake, S., Kataoka, R. and Sato, T. (2017) Cosmic Ray Modulation and Radiation Dose of Aircrews during the Solar Cycle 24/25. Space Weather, 15, 589-605.
https://doi.org/10.1002/2016SW001588
[11]  Neher, H.V. (1961) Cosmic-Ray Knee in 1958. Journal of Geophysical Research, 66, 4007.
https://doi.org/10.1029/JZ066i012p04007
[12]  Hillas, A.M. (1979) The Knee of the Cosmic-Ray Spectrum: Not a Magnetic Trapping Effect? International Cosmic Ray Conference, Vol. 8, 7.
[13]  Forman, M.A. (1981) Could the Cosmic-Ray Knee at 1015 eV Be Due to the Finite Time for Supernova Shock Acceleration? Bulletin of the American Astronomical Society, 13, 796.
[14]  Clay, R.W. (1984) Cosmic Ray Anisotropy and the Knee of the Energy Spectrum. Australian Journal of Physics, 37, 97-103.
https://doi.org/10.1071/PH840097
[15]  Clay, R.W. (1988) The Knee of the Cosmic Ray Energy Spectrum. Australian Journal of Physics, 41, 729-733.
https://doi.org/10.1071/PH880729
[16]  Kang, H., Rachen, J.P. and Biermann, P.L. (1996) Contributions to the Cosmic Ray Flux above the Ankle: Clusters of Galaxies. Journal of Korean Astronomical Society Supplement, 29, S271-S272.
[17]  Kang, H., Rachen, J.P. and Biermann, P.L. (1997) Contributions to the Cosmic Ray Flux above the Ankle: Clusters of Galaxies. MNRAS, 286, 257-267.
https://doi.org/10.1093/mnras/286.2.257
[18]  Gelmini, G. and Varieschi, G. (2002) Cosmic Rays above the Ankle from Z-Bursts.
[19]  Compton, A.H. and Getting, I.A. (1935) An Apparent Effect of Galactic Rotation on the Intensity of Cosmic Rays. Physical Review, 47, 817-821.
https://doi.org/10.1103/PhysRev.47.817
[20]  Vallarta, M.S. and Feynman, R.P. (1939) The Scattering of Cosmic Rays by the Stars of a Galaxy. Physical Review, 55, 506-507.
https://doi.org/10.1103/PhysRev.55.506.2
[21]  Kiepenheuer, K.O. (1950) Cosmic Rays as the Source of General Galactic Radio Emission. Physical Review, 79, 738-739.
https://doi.org/10.1103/PhysRev.79.738
[22]  Unsöld, A. (1951) Cosmic Radiation and Cosmic Magnetic Fields. I. Origin and Propagation of Cosmic Rays in Our Galaxy. Physical Review, 82, 857-863.
https://doi.org/10.1103/PhysRev.82.857
[23]  Burbidge, G.R. (1957) Acceleration of Cosmic-Ray Particles among Extragalactic Nebulae. Physical Review, 101, 269-271.
https://doi.org/10.1103/PhysRev.107.269
[24]  Fujimoto, Y., Hasegawa, H. and Taketani, M. (1964) Part I. Cosmic Rays in Galactic and Extragalactic Space. Progress of Theoretical Physics Supplement, 30, 32-85.
https://doi.org/10.1143/PTPS.30.32
[25]  Laster, H. (1964) Galactic and Extragalactic Propagation of Cosmic Rays. Physical Review, 135, 1274-1279.
https://doi.org/10.1103/PhysRev.135.B1274
[26]  Fermi, E. (1949) On the Origin of the Cosmic Radiation. Physical Review, 75, 1169-1174.
https://doi.org/10.1103/PhysRev.75.1169
[27]  Bohm, D. and Gross, E.P. (1948) Plasma Oscillations as a Cause of Acceleration of Cosmic-Ray Particles. Physical Review, 74, 624.
https://doi.org/10.1103/PhysRev.74.624
[28]  Parker, E.N. (1955) Hydromagnetic Waves and the Acceleration of Cosmic Rays. Physical Review, 99, 241-263.
https://doi.org/10.1103/PhysRev.99.241
[29]  Thompson, W.B. (1955) On the Acceleration of Cosmic-Ray Particles by Magneto-Hydrodynamic Waves. Proceedings of the Royal Society of London Series A, 233, 402-406.
https://doi.org/10.1098/rspa.1955.0275
[30]  Laster, H. (1957) Factors Affecting the Galactic Diffusion of Cosmic Rays. Physical Review, 107, 1112.
https://doi.org/10.1103/PhysRev.107.1112
[31]  Jokipii, J.R. (1967) Cosmic-Ray Propagation. II. Diffusion in the Interplanetary Magnetic Field. ApJ, 149, 405.
https://doi.org/10.1086/149265
[32]  Burlaga, L.F. (1967) Anisotropic Diffusion of Solar Cosmic Rays. Journal of Geophysical Research, 72, 4449-4466.
https://doi.org/10.1029/JZ072i017p04449
[33]  Jokipii, J.R. (1968) Backscatter and Diffusion of Solar Cosmic Rays. The Astronomical Journal Supplement, 73, 66.
https://doi.org/10.1086/149612
[34]  Miroshnichenko, L.I. (1969) Solar Cosmic-Ray Diffusion in the Presence of a Magnetic Barrier in Interplanetary Space. Geomagnetism and Aeronomy, 9, 271.
[35]  Bel’Skii, S.A. (1970) The Magnetic Fields of Meteor Streams as a Possible Mechanism for the Diffusion of Cosmic Rays in Circumsolar Space. Astronomicheskii Zhurnal, 47, 201-205.
[36]  Jokipii, J.R. and Parker, E.N. (1970) On the Convection, Diffusion, and Adiabatic Deceleration of Cosmic Rays in the Solar Wind. ApJ, 160, 735.
https://doi.org/10.1086/150465
[37]  Lingenfelter, R.E., Ramaty, R. and Fisk, L.A. (1971) Compound Diffusion of Cosmic Rays. Astrophysical Letters, 8, 93-97.
[38]  Jones, F.C., Birmingham, T.J. and Kaiser, T.B. (1973) Investigation of Resonance Integrals Occurring in Cosmic-Ray Diffusion Theory. ApJ Letters, 180, L139.
https://doi.org/10.1086/181170
[39]  Bagdasarian, M.B. and Dorman, L.I. (1980) Cosmic Ray Modulation by a Shock Wave Taking into Account Adiabatic Cooling and Transversal Diffusion (Automodel Solution). Geomagnetism and Aeronomy, 20, 990.
[40]  Bazilevskaya, G.A. and Golynskaya, R.M. (1990) Features of the Focused Diffusion of Solar Cosmic Rays. Geomagnetism and Aeronomy, 30, 725-727.
[41]  Candia, J., Roulet, E. and Epele, L.N. (2002) Turbulent Diffusion and Drift in Galactic Magnetic Fields and the Explanation of the Knee in the Cosmic Ray Spectrum. Journal of High Energy Physics, 2002, 33.
https://doi.org/10.1088/1126-6708/2002/12/033
[42]  Shalchi, A., Büsching, I., Lazarian, A. and Schlickeiser, R. (2010) Perpendicular Diffusion of Cosmic Rays for a Goldreich—Sridhar Spectrum. ApJ, 725, 2117-2127.
https://doi.org/10.1088/0004-637X/725/2/2117
[43]  Medvedev, M.V. and Medvedev, V.V. (2015) Asymmetric Diffusion of Cosmic Rays. Physics of Plasmas, 22, Article ID: 091504.
https://doi.org/10.1063/1.4928942
[44]  Wiengarten, T., Oughton, S., Engelbrecht, N.E., Fichtner, H., Kleimann, J. and Scherer, K. (2016) A Generalized Two-Component Model of Solar Wind Turbulence and ab Initio Diffusion Mean-Free Paths and Drift Lengthscales of Cosmic Rays. ApJ, 833, 17.
https://doi.org/10.3847/0004-637X/833/1/17
[45]  Buonocore, S. and Sen, M. (2021) Anomalous Diffusion of Cosmic Rays: A Geometric Approach. AIP Advances, 11, Article ID: 055221.
https://doi.org/10.1063/5.0049401
[46]  Gould, H. and Tobochnik, J. (1988) An Introduction to Computer Simulation Methods. Addison-Wesley, Reading.
[47]  Olver, F.W.J., Lozier, D.W., Boisvert, R.F. and Clark, C.W. (2010) NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge.
[48]  Lang, K.R. (1999) Astrophysical Formulae. Third Edition, Springer, New York.
https://doi.org/10.1007/978-3-662-21639-2
[49]  Longair, M.S. (2011) High Energy Astrophysics III ed. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9780511778346
[50]  Hillas, A.M. (1984) The Origin of Ultra-High-Energy Cosmic Rays. ARA&A, 22, 425.
https://doi.org/10.1146/annurev.aa.22.090184.002233
[51]  Adriani, O., Barbarino, G.C., Bazilevskaya, G.A., et al. (2011) PAMELA Measurements of Cosmic-Ray Proton and Helium Spectra. Science, 332, 69-72.
https://doi.org/10.1126/science.1199172
[52]  Aguilar, M., Aisa, D., Alpat, B., et al. (2015) Precision Measurement of the Proton Flux in Primary Cosmic Rays from Rigidity 1 GV to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station. Physical Review Letters, 114, Article ID: 171103.
[53]  Aguilar, M., Aisa, D., Alpat, B., et al. (2015) Precision Measurement of the Helium Flux in Primary Cosmic Rays of Rigidities 1.9 GV to 3 TV with the Alpha Magnetic Spectrometer on the International Space Station. Physical Review Letters, 115, Article ID: 211101.
[54]  Zyla, P., et al. (Particle Data Group) (2020) Review of Particle Physics. PTEP, 2020, 083C01.
https://doi.org/10.1093/ptep/ptaa104
[55]  Stone, E.C., Cummings, A.C., McDonald, F.B., Heikkila, B.C., Lal, N. and Webber, W.R. (2013) Voyager 1 Observes Low-Energy Galactic Cosmic Rays in a Region Depleted of Heliospheric Ions. Science, 341, 150-153.
https://doi.org/10.1126/science.1236408
[56]  Potgieter, M. (2014) Very Local Interstellar Spectra for Galactic Electrons, Protons and Helium. Brazilian Journal of Physics, 44, 581-588.
https://doi.org/10.1007/s13538-014-0238-2
[57]  Cholis, I., Hooper, D. and Linden, T. (2016) A Predictive Analytic Model for the Solar Modulation of Cosmic Rays. Physical Review D, 93, Article ID: 043016.
https://doi.org/10.1103/PhysRevD.93.043016
[58]  Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (1992) Numerical Recipes in Fortran. The Art of Scientific Computing. Cambridge University Press, Cambridge.
[59]  Schoo, S., Apel, W.D., Arteaga-Velázquez, J.C., et al. (2015) The Energy Spectrum of Cosmic Rays in the Range from 10{14} to 10{18} eV. 34th International Cosmic Ray Conference, Vol. 34, 263.
[60]  Zaninetti, L. (2020) On the Shape of the Local Bubble. International Journal of Astronomy and Astrophysics, 10, 11-27.
https://doi.org/10.4236/ijaa.2020.101002
[61]  Zaninetti, L. (2021) Energy Conservation in the Thin Layer Approximation: VI. Bubbles and Super-Bubbles. International Journal of Astronomy and Astrophysics, 11, 370-391.
https://doi.org/10.4236/ijaa.2021.113017
[62]  Apel, W.D., Arteaga-Velàzquez, J.C., Bekk, K., et al. (2013) Ankle-Like Feature in the Energy Spectrum of Light Elements of Cosmic Rays Observed with KASCADE-Grande. Physical Review D, 87, Article ID: 081101.
https://doi.org/10.1103/PhysRevD.87.081101
[63]  Schroeder, F., AbuZayyad, T., Anchordoqui, L., et al. (2019) High-Energy Galactic Cosmic Rays. Bulletin of the American Astronomical Society, 51, 131.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413