It is shown that the well-known wave behaviors of material particles and photons, as well as the newly discovered wave-like structures in the cosmic redshift, are related phenomena that follow conclusively when senders and receivers of photons or material particles are topologically located in manifolds with a dimension difference of one. In this context, the inertial mass of the proton and the electron, their spin properties and the cause of time are derived from basic topological and physical laws. In addition, the quantum geometric basis of relativistic time dilation, the basis of the relativistic energy-momentum relationship and the relationship between energy and time are shown. Finally, it is shown that a curved cosmic space causes a distance-dependent reddening of light and the associated apparent escape velocity of distant cosmic objects, and that this also leads to a topologically conditioned wave structure of this redshift.
References
[1]
De Broglie, L. (1925) Recherches sur la theorie des quanta (Researches on Quantum Theory). Annals de Physique, 3, 22. https://doi.org/10.1051/anphys/192510030022
[2]
Einstein, A. (1905) über einen die Erzeugung und Verwandlung des Lichts betreffenden heuristischen Gesichtspunkt (On a Heuristic Point of View Referring to the Generation and Change of Light). Annalen der Physik, 17, 132-148. https://doi.org/10.1002/andp.19053220607
[3]
Heisenberg, W. (1926) über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen (On Quantum-Theoretical Reinterpretation of Kinematical and Mechanical Relations). Zeitschrift für Physik, 33, 897. https://doi.org/10.1007/BF01328377
[4]
Schrödinger, E. (1926) Quantisierung als Eigenwertproblem (Quantization as a Eigenvalue Problem). Annalen der Physik, 79, 361-376. https://doi.org/10.1002/andp.19263840404
[5]
Dirac, P.A.M. (1928) The Quantum Theory of the Electron. Proceedings of the Royal Society A, 117, 610. https://doi.org/10.1098/rspa.1928.0023
[6]
Born, M. (1926) Zur Quantenmecchanik der Stoßvorgänge (On Quantum Mechanics of Dispersion). Zeitschrift für Physik, 17, 863-867. https://doi.org/10.1007/BF01397477
[7]
Einstein, A., Podolsky, B. and Rosen, E. (1935) Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Physical Review, 47, 777-780. https://doi.org/10.1103/PhysRev.47.777
[8]
Bohr, N. (1935) Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Physical Review, 48, 696-702. https://doi.org/10.1103/PhysRev.48.696
[9]
Born, M. and Jordan, P. (1925) Zur Quantenmechanik (On Quantum-Mechanics). Zeitschrift für Physik, 34, 858. https://doi.org/10.1007/BF01328531
[10]
Bohm, D. (1952) A Suggested Interpretation of the Quantum Theory in Terms of Hidden Variables. Physical Review, 85, 166. https://doi.org/10.1103/PhysRev.85.166
[11]
Bell, J. (1966) On the Problem of Hidden Variables in Quantum Mechanics. Reviews of Modern Physics, 38, 447. https://doi.org/10.1103/RevModPhys.38.447
[12]
Fock, W. (1952) Kritik der Anschauungen Bohrs über die Quantenmechanik (Critique of Bohr’s Views about Quantum Mechanics). Progress of Physics, 45, 3-14.
[13]
Everett, H. (1957) The Relative State Formulation of Quantum Mechanics. Reviews of Modern Physics, 29, 454-462. https://doi.org/10.1103/RevModPhys.29.454
[14]
Dirac, P.A.M. (1958) Principles of Quantum Mechanics. 4th Edition, Oxford University Press, Oxford.
[15]
Kunst, E.K. (2014) On the Physics inside a Closed, Static, Rotating Einsteinian Hypersphere in due Consideration of the Galaxy. Natural Science, 6, 897-961. https://doi.org/10.4236/ns.2014.611087
[16]
Lenz, F. (1951) The Ratio of Proton and Electron Masses. Physical Review, 82, 554. https://doi.org/10.1103/PhysRev.82.554.2
[17]
Van Wees, B.J., et al. (1988) Quantized Conductance of Point Contacts in a Two-Dimensional Electron Gas. Physical Review Letters B, 60, 848. https://doi.org/10.1103/PhysRevLett.60.848
[18]
Wharam, T.J., et al. (1988) One-Dimensional Transport and the Quantization of the Ballistic Resistance. Journal of Physics C, 21, L209. https://doi.org/10.1088/0022-3719/21/8/002
[19]
Thomas, K.J., et al. (1996) Interaction Effects in a One-Dimensional Constriction. Physical Review Letters, 77, 135. https://doi.org/10.1103/PhysRevLett.77.135
[20]
von Klitzing, K., et al. (1980) New Method for High Accuracy Determination of the Fine Structure Constant Based on Quantized Hall Resistance. Physical Review Letters, 45, 494-497. https://doi.org/10.1103/PhysRevLett.45.494
[21]
Störmer, H.L. and Hill, M. (1984) Der fraktionale QHE (The Fractional QHE). Phys. Blätter, Nr. 9.
[22]
Novoselov, H.L., et al. (2005) Two-Dimensional Gas of Massless Dirac Fermions in Graphene. Nature, 438, 197-200. https://doi.org/10.1038/nature04233
[23]
Cantor, G. (1878) Ein Beitrag zur Mannigfaltigkeitslehre (A Contribution to the Theory of Manifoldness). Journal für die reine und angewandte Mathematik, 84, 242-258. https://doi.org/10.1515/crll.1878.84.242
[24]
Peano, G. (1890) Sur une courbe qui remplit toute une aire plane (On a Curve That Fills a Whole Flat Surface). Mathematische Annalen, 36, 157-160. https://doi.org/10.1007/BF01199438
[25]
Brouwer, L.E.J. (1911) Beweis der Invarianz der Dimensionszahl (Proof of Invariance of Dimension). Mathematische Annalen, 70, 161-165. https://doi.org/10.1007/BF01461154
[26]
Bach, R., et al. (2013) Controlled Double-Slit Electron Diffraction. New Journal of Physics, 15, Article ID: 033018. http://www.njp.org https://doi.org/10.1088/1367-2630/15/3/033018
[27]
Fuwa, M., et al. (2015) Experimental Proof of Nonlocal Wavefunction Collapse for a Single Particle Using Homodyne Measurements. Nature Communication, 6, Article No. 66655. https://doi.org/10.1038/ncomms7665
[28]
Robens, C., et al. (2015) Ideal Negative Measurements in Quantum Walks Disprove Theories Based on Classical Trajectories. Physical Review X, 5, Article ID: 0110032015. https://doi.org/10.1103/PhysRevX.5.011003
[29]
Kunst, E.K. (2021) Relativistic Quantitative Determination of the “Mysterious” Differences in the Hubble Constant. Natural Science, 13, 1-7. https://doi.org/10.4236/ns.2021.131001
[30]
Tifft, W.G. (1996) Evidence for Quantized and Variable Redshifts in the Cosmic Background Rest Frame. Astrophysics and Space Science, 244, 29-56. https://doi.org/10.1007/BF00642278
[31]
Karlsson, K.G. (1971) Possible Discretization of Quasar Redshifts. Astronomy & Astrophysics, 13, 333-335.
[32]
Bell, M.B. and Mc Diarmid, D. (2006) Six Peaks Visible in the Redshift Distribution of 46,400 Sdss Quasars Agree with the Preferred Redshifts Predicted by the Decreasing Intrinsic Redshift Model. The Astrophysical Journal, 648, 140. https://doi.org/10.1086/503792
[33]
Hartnett, J.G. (2008) Redshift Periodicity in Quasar Number Counts from Sloan Digital Sky Survey.
[34]
Tang, S.M. and Zhang, S.N. (2005) Critical Examinations of QSO Redshifts Periodicities and Associations with Galaxies in Sloan Digital Sky Survey Data. The Astrophysical Journal, 633, 41-51. https://doi.org/10.1086/432754