全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Beyond Biological Aging: Table Analysis

DOI: 10.4236/aar.2022.112003, PP. 27-34

Keywords: Basal Metabolic Rate, Body Weight, Energy Dissipation, Geometric Phase, Information Density, Relative Surface, Structural Geometry

Full-Text   Cite this paper   Add to My Lib

Abstract:

Keeping in mind the relationship between the basal metabolic rate and the change in weight in the aging process, we propose to verify the holographic description of the same. For this we set ourselves the following objectives: Verify the correlation between total energy dissipation and energy dissipation per unit body mass, and verify the correlation between the total energy dissipation and the body mass. As a result of the data analysis, we obtained a coherent representation of our proposal. A high degree of correlation between the total energy dissipation in an organism and the basal metabolic rate/dry kg was found. Such a condition implies that the stated biological system satisfies the Holographic Principle.

References

[1]  Barragán, J. and Sánchez, S. (2019) Human Biological Aging: A Vector Model. Current Research Journal of Biological Sciences, 11, 13-16.
https://doi.org/10.19026/crjbs.11.6024
[2]  Barragán, J. and Sánchez, S. (2015) Biological Aging: From the Boolean Networks, to the Geometric Phase. Current Research Journal of Biological Sciences, 7, 47-52.
https://doi.org/10.19026/crjbs.7.5207
[3]  Ray, S., Kassan, A., Busija, A.R., Rangamani, P. and Patel, H.H. (2016) The Plasma Membrane as a Capacitor for Energy and Metabolism. American Journal of Physiology—Cell Physiology, 310, C181-C192.
https://doi.org/10.1152/ajpcell.00087.2015
https://pubmed.ncbi.nlm.nih.gov/26771520/
[4]  Ray, S., Kassan, A., Busija, A.R., Rangamani, P. and Patel, H.H. (2017) Why Do Fast-Growing Bacteria Enter Overflow Metabolism? Testing the Membrane Real Estate Hypothesis. Cell Systems, 5, 95-104.
https://doi.org/10.1016/j.cels.2017.06.005
https://pubmed.ncbi.nlm.nih.gov/28755958/
[5]  Hulbert, A.J. (2010) Metabolism and Longevity: Is There a Role for Membrane Fatty acids? Integrative and Comparative Biology, 50, 808-817.
https://doi.org/10.1093/icb/icq007
[6]  Glazier, D.S. (2015) Body-Mass Scaling of Metabolic Rate: What Are the Relative Roles of Cellular versus Systemic Effects? Biology, 4, 187-199.
https://doi.org/10.3390/biology4010187
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4381225/
[7]  West, G.B., Woodruff, W.H. and Brown, J.H. (2002) Allometric Scaling of Metabolic Rate from Molecules and Mitochondria to Cells and Mammals. Proceedings of the National Academy of Sciences of the United States of America, 99, 2473-2478.
https://doi.org/10.1073/pnas.012579799
https://pubmed.ncbi.nlm.nih.gov/11875197/
[8]  Shestopaloff, Y.K. (2016) Metabolic Allometric Scaling Model: Combining Cellular Transportation and Heat Dissipation Constraints. Journal of Experimental Biology, 219, 2481-2489.
https://doi.org/10.1242/jeb.138305
[9]  White, C.R. and Kearney, M.R. (2014) Metabolic Scaling in Animals: Methods, Empirical Results, and Theoretical Explanations. Comprehensive Physiology, 4, 231-256.
https://doi.org/10.1002/cphy.c110049
[10]  Bennett, A.F. (1988) Structural and Functional Determinates of Metabolic Rate. American Zoologist, 28, 699-708.
https://doi.org/10.1093/icb/28.2.699
[11]  Davison, J. (1955) Body Weight, Cell Surface, and Metabolic Rate in Anuran Amphibia. The Biological Bulletin, 109, 407-419.
https://doi.org/10.2307/1539173
https://www.jstor.org/stable/1539173?seq=1
[12]  Glazier, D.S. (2020) Activity Alters How Temperature Influences Intraspecific Metabolic Scaling: Testing the Metabolic-Level Boundaries Hypothesis. Journal of Comparative Physiology B, 190, 445-454.
https://doi.org/10.1007/s00360-020-01279-0
[13]  Savage, V.M., Allen, A.P., Brown, J.H., Gillooly, J.F., Herman, A.B., Woodruff, W.H. and West, G.B. (2007) Scaling of Number, Size, and Metabolic Rate of Cells with Body Size in Mammals. Proceedings of the National Academy of Sciences of the United States of America, 104, 4718-4723.
https://doi.org/10.1073/pnas.0611235104
[14]  Gardner, J.D., Laurin, M., Organ, Ch.L. (2019) The Relationship between Genome Size and Metabolic Rate in Extant Vertebrates. Philosophical Transactions of the Royal Society B: Biological Sciences, 375, Article ID: 20190146.
https://doi.org/10.1101/659094
https://www.biorxiv.org/content/10.1101/659094v2.full
[15]  Brown, M.F., Gratton, T.P. and Stuart, J.A. (2007) Metabolic Rate Does Not Scale with Body Mass in Cultured Mammalian Cells. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 292, R2115-R2121.
https://doi.org/10.1152/ajpregu.00568.2006
[16]  Speakman, J.R. (2005) Body Size, Energy Metabolism and Lifespan. Journal of Experimental Biology, 208, 1717-1730.
https://doi.org/10.1242/jeb.01556
[17]  Susskind, L. (1998) The World as a Hologram. Journal of Mathematical Physics, 36, 6377-6396.
https://doi.org/10.1063/1.531249
[18]  Bigatti, D. and Susskind, L. (2000) The Holographic Principle. In: Thorlacius, L. and Jonsson, T., Eds., M-Theory and Quantum Geometry, NATO Science Series (Series C: Mathematical and Physical Sciences), Vol. 556. Springer, Dordrecht, 179-226.
https://doi.org/10.1007/978-94-011-4303-5_4
[19]  Momeni, D., Faizal, M., Alsaleh, S., Alasfar, L. and Myrzakul, A. (2018) Thermodynamic and Holographic Information Dual to Volume. The European Physical Journal C, 78, Article No.765.
https://doi.org/10.1140/epjc/s10052-018-6226-x
[20]  Bekenstein, J. (2003) Information in the Holographic Universe. Scientific American, 289, 58-65.
http://www.jstor.org/stable/26060403
[21]  Heemskerk, I., Penedones, J., Polchinski, J. and Sully, J. (2009) Holography from Conformal Field Theory. Journal of High Energy Physics, 10, Article No. 79.
https://doi.org/10.1088/1126-6708/2009/10/079
[22]  Sandberg, A. and Bostrom, N. (2008) Whole Brain Emulation: A Roadmap. Technical Report No. 2008-3, Future of Humanity Institute, Oxford University, Oxford.
http://www.fhi.ox.ac.uk/reports/2008-3.pdf
[23]  Sánchez, S. and Barragán, J. (2011) Metabolically Active Weight: Between Kleiber’s Law and the Second Law of Thermodynamics. Revista Argentina de Endocrinologia y Metabolismo, 48, 136-142.
[24]  Kaneko, K.J. (2016) Chapter Eight: Metabolism of Preimplantation Embryo Development: A Bystander or an Active Participant? Current Topics in Developmental Biology, 120, 259-310.
https://doi.org/10.1016/bs.ctdb.2016.04.010
[25]  Watanabe, T., Biggins, J.S., Tannan, N.B. and Srinivas, S. (2014) Limited Predictive Value of Blastomere Angle of Division in Trophectoderm and Inner Cell Mass Specification. Development, 141, 2279-2288.
https://doi.org/10.1242/dev.103267
[26]  Gould, S.J. (1994) The Evolution of Life on Earth. Scientific American, 271, 84-91.
https://doi.org/10.1038/scientificamerican1094-84
[27]  Szenk, M., Dill, K.A. and de Graff, A.M.R. (2017) Why Do Fast-Growing Bacteria Enter Overflow Metabolism? Testing the Membrane Real Estate Hypothesis. Cell Systems, 5, 95-104.
https://doi.org/10.1016/j.cels.2017.06.005
http://www.sciencedirect.com/science/article/pii/S2405471217302338
[28]  Norin, T. and Metcalfe, N.B. (2019) Ecological and Evolutionary Consequences of Metabolic Rate Plasticity in Response to Environmental Change. Philosophical Transactions of the Royal Society B, 374, Article ID: 20180180.
https://doi.org/10.1098/rstb.2018.0180
[29]  Nave, C.R. (2010) The Holographic Image. Department of Physics and Astronomy Georgia State University Atlanta, Georgia, 1-2.
http://hyperphysics.phy-astr.gsu.edu/hbasees/optmod/holog.html

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413