全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Rocky Planets’ Magnetic Field: A New Parameter for the Drake’s Formula

DOI: 10.4236/ijaa.2022.121004, PP. 53-67

Keywords: Drake’s Formula, Magnetosphere, Solar Wind, Extraterrestrial Intelligent Life

Full-Text   Cite this paper   Add to My Lib

Abstract:

The Drake formula is a statistical method of forecasting the possible number N of technically evolved extraterrestrial and galactic civilizations able to communicate with the human species. It is based on seven different factors that can be grouped into factors of type A, fA (“Astrophysicist”) and type B, fB (“Astrobiological”). The quantitative analysis of these factors at the time of the presentation of the formula was subjective and highly variable for both factors fA and fB. Current scientifical and technological development has made it possible to refine the quantitative estimates of the fA group whose definition is now less uncertain. In group fA the parameter ne is understood as the number of planets capable of sustaining life. By means of ne Drake defines this possibility exclusively from the geometric point of view. In particular, the planet’s orbit must be included in the circumstellar space in which the planetary temperature allows the presence of liquid water. This is not enough because, for liquid (and gaseous) water to be present on the planet’s surface, it is also essential that the planet has a magnetic field of adequate intensity to shield the flow of charged particles coming from its star (solar wind). The solar wind is able to break up and disperse the liquid and gaseous water molecules and any organic molecules in times much shorter than theoretically necessary for the formation of life and above all, except for singularities, than necessary for evolution to arrive at intelligent life. Here the planetary magnetic field parameter nm is introduced into the Drake formula and its statistical probability of existence is discussed.

References

[1]  Nolte, J.T., Krieger, A.S., Timothy, A.F., Gold, R.E., Roelof, C.E., Vaiana, G., Lazarus, A.T., Sullivan, J.D. and McIntosh, P.S. (1976) Corona Holes as a Source of Solara Wind. Solar Physics, 46, 303-222.
https://doi.org/10.1007/BF00149859
[2]  Russel, C.T. (1986) Solar Wind Control of the Magnetospheric Configuration. In: Kamide, Y. and Slavin, J.A., Eds., Solar Wind Magnetosphere Coupling, Springer, Dordrecht, 209-231.
[3]  Villante, U. (1993) Vento solare e magnetosfera terrestre. Annali di Geofisica, 36, 1-10.
[4]  De Santis (1993) Tempeste, sottotempoeste, e baie magnetiche. Annali di Geofisica, 36, 55-77.
[5]  Faggioni, O. (1986) Magnetic interaction Earth-Sun: Same quantitative evaluations, PhD Dissertation, Istituto Geofisico e Geodetico, Facoltà di Sc. MFN, Università degli Studi di Genova, Biblioteca Naz. Centrale Vittorio Emanuele II, Roma.
[6]  Carlisle, C. (2015). Mars Losing Gas to Solar Wind.
https://skyandtelescope.org/astronomy-news/mars-losing-gas-to-solar-wind-0911201523/
[7]  McDonough, W.F. and Yoshizaki, T. (2021) Terrestrial Planet Composition Controllrd by Accretion Disk Magnetic Field. Progress in Earth and Planetary Science, 8, Article No. 39.
https://doi.org/10.1186/s40645-021-00429-4
[8]  Olgivie, K.W., Burlaga, L.F. and Wilkerson, T.D. (1968) Plasma Observation on Explorer 34. Journal of Geophysical Research (1896-1977), 73, 6809-6824.
https://doi.org/10.1029/JA073i021p06809
[9]  Hones Jr., E.W. (1985) Magnetic Reconnection in the Earth’s Magnetotail. Australian Journal of Physics, 38, 981-97.
https://doi.org/10.1071/PH850981
[10]  Akasofu, S.I. (1978) The Interaction between a Magnetized Plasma Flowand a Magnetical Celestial Body: A Reiew of Magnetospheric Studies. Space Science Reviews, 21, 489-526.
https://doi.org/10.1007/BF00240906
[11]  Faggioni, O. (2018) The Fourier Notation of the Geomagnetic Signals Informative Parameters. Journal of Signal and Information Processing, 9, 153-166.
https://doi.org/10.4236/jsip.2018.93009
[12]  Faggioni, O. (2019) The Information Protection in Automatic Reconstruction of Not Continuos Geophysical Data Series. Journal of Data Analysis and Information Processing, 7, 208-227.
https://doi.org/10.4236/jdaip.2019.74013
[13]  Alldredge, L.R., Van Voorhis, G.D. and Davis, T.M. (1963) Aeromagnetic Profile around the World. Journal of Geophysical Research (1896-1977), 68, 3679-3692.
https://doi.org/10.1029/JZ068i012p03679
[14]  Faggioni, O., Pinna, E., Savelli, C. and Schreider, A.A. (1995) Geomagnetism and Age Study of Tyrrhenian Seamounts. Geophysical Journal International, 123, 915-930.
https://doi.org/10.1111/j.1365-246X.1995.tb06898.x
[15]  Wasilewsky, P.J., Thomas, H.H. and Mayhew, M.A. (1979) The Moho as a Magnetic Boundary. Geophysical Research Letters, 6, 541-544.
https://doi.org/10.1029/GL006i007p00541
[16]  Elsasser, W.M. (1946) Induction Effects in Terretsrial Magnetism Part 1. Theory. Physical Review, 69, 106-116.
https://doi.org/10.1103/PhysRev.69.106
[17]  Bullard, E.C. (1949) The Magnetic Field within the Earth. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 197, 433-453.
https://doi.org/10.1098/rspa.1949.0074
[18]  Rikitake, T. (1958) Oscillation of a System of Disk Dynamos. Mathematical Proceedings of the Cambridge Philosophical Society, 54, 89-105.
https://doi.org/10.1017/S0305004100033223
[19]  Meloni, A. (1999) Il pianeta magnetico. Carocci Editore, Rome, 180 p.
[20]  Lineweaver, C.H. and Davis, T.M. (2002) Does the Rapid Appearance of Life on Earth Suggest That Life Is Common in the Universe? Astrobiology, 2, 293-304.
https://doi.org/10.1089/153110702762027871
[21]  von Bloh, W., Bounama, C., Cuntz, M. and Franck, S., (2007) The habitability of super-Earths in Gliese 581. Astronomy & Astrophysics, 476, 1365-1371.
https://doi.org/10.1051/0004-6361:20077939
[22]  Selis, F., Kasting, J.F., Levrard, B., Paillet, J., Ribas, I. and Delfosse, X. (2007) Habitable planets around the star Gliese 581. Astronomy & Astrophysics, 476, 1373-1387.
https://doi.org/10.1051/0004-6361:20078091
[23]  Wanjek, C. (2008) Milky Way Churns Out Seven New Stars Per Year, Scientists Say. NASA, Goddard Space Flight Center, Greenbelt, 8-5.
[24]  Russell, C.T. (1993) Magnetic Fields of the Terrestrial Planets. Journal of Geophysical Research: Planets, 98, 18684-18695.
https://doi.org/10.1029/93JE00981
[25]  Russell, C.T. and Luhmann, J.G. (2018) Mercury Magnetic Field and Magnetosphere. University of California, Los Angeles.
[26]  Slavin, J.A., Anderson, B.J., Baker, D.N., Benna, M., Boardsen, S.A., Gloeckler, G., Gold, R.E., Ho, C.G., Imber, S.M., Korth, H., Krimigis, S.M., McNutt Jr., R.L., Nittler, L.R., Raines, J.M., Sarantos, M., Schriver, D., Solomon, S.C., Starr, R.D., Trávníček, P. and Zurbuchen, T.H. (2011) MESSENGER Observation of Reconnection and Its Effects on Mercury’s Magnetosphere, (PDF). University of Colorado, Boulder.
[27]  Allen, R.C., Cernuda, I., Pacheco, D., Berger, L., Xu, Z.G., Freiherr von Forstner, J.L., Rodríguez-Pacheco, J., et al. (2021) Energetic ions in the Venusian system: Insights from the first Solar Orbiter Flyby. Astronomy & Astrophysics, 656, Article No. L7.
https://doi.org/10.1051/0004-6361/202140803
[28]  Westby, T. and Conselice, C.J. (2020) The Astrobiological Copernican Weak and Strong Limits for Intelligent Life. Astrophysical Journal, 896, Article No. 58.
https://doi.org/10.3847/1538-4357/ab8225

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413