全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

治疗胆管癌的FGFR小分子抑制剂研究进展
Research Progress of FGFR Small Molecule Inhibitors for Cholangiocarcinoma

DOI: 10.12677/HJMCe.2022.101004, PP. 27-38

Keywords: 胆管癌,靶向治疗,成纤维细胞生长因子受体,小分子抑制剂
Cholangiocarcinoma
, Target Therapy, Fibroblast Growth Factor Receptor, Small Molecule Inhibitor

Full-Text   Cite this paper   Add to My Lib

Abstract:

由于基因扩增、激活突变和致癌融合,成纤维细胞生长因子(fibroblast growth factor, FGF)/FGFR系统的失调经常发生在肿瘤中。因此,FGF/FGFR靶向治疗的发展是一些基础、临床前和临床研究的重点。胆管癌(cholangiocarcinoma, CCA)是一种起源于胆管的肿瘤,化疗长期以来一直是转移性CCA的标准治疗方法,但最近的临床试验表明,成纤维细胞生长因子受体(fibroblast growth factor receptor, FGFR)抑制剂是一种有前景的治疗FGFR基因遗传改变的晚期CCA的新方法。本文综述了FGFR通路的生物学特性、CCA的遗传特征、CCA中重要的FGFR抑制剂临床试验,以及未来开发FGFR抑制剂用于CCA患者的有效临床应用的机遇和挑战。
Dysregulation of the fibroblast growth factor (FGF)/FGF receptor system often occurs in tumors due to gene amplification, activation mutations, and oncogenic fusions. Therefore, the development of FGF/FGFR-targeted therapies is the focus of some basic, preclinical and clinical studies. Cholangio-carcinoma is a tumor originating in the bile duct, and chemotherapy has long been the standard treatment for metastatic CCA, but recent clinical trials have shown that fibroblast growth factor re-ceptor inhibitors are a promising new treatment for advanced CCA with genetic alterations of the FGFR gene. This review reviews the biology of FGFR pathways, the genetic characteristics of CCA, the important clinical trials of FGFR inhibitors in CCA, and the opportunities and challenges for devel-oping effective clinical applications of FGFR inhibitors in CCA patients in the future.

References

[1]  Turner, N. and Grose, R. (2010) Fibroblast Growth Factor Signalling: From Development to Cancer. Nature Reviews Cancer, 10, 116-129.
https://doi.org/10.1038/nrc2780
[2]  Touat, M., Ileana, E., Postel-Vinay, S., et al. (2015) Targeting FGFR Signaling in Cancer. Clinical Cancer Research, 21, 2684-2694.
https://doi.org/10.1158/1078-0432.CCR-14-2329
[3]  Wiedemann, M. and Trueb, B. (2000) Characterization of a Novel Protein (FGFRL1) from Human Cartilage Related to FGF Receptors. Genomics, 69, 275-279.
https://doi.org/10.1006/geno.2000.6332
[4]  Pacini, L., Jenks, A.D., Lima, N.C., et al. (2021) Targeting the Fibro-blast Growth Factor Receptor (FGFR) Family in Lung Cancer. Cells, 10, 1154.
https://doi.org/10.3390/cells10051154
[5]  Hallinan, N., Finn, S., Cuffe, S., et al. (2016) Targeting the Fibroblast Growth Factor Receptor Family in Cancer. Cancer Treatment Reviews, 46, 51-62.
https://doi.org/10.1016/j.ctrv.2016.03.015
[6]  Helsten, T., Elkin, S., Arthur, E., et al. (2016) The FGFR Land-scape in Cancer: Analysis of 4,853 Tumors by Next- Generation Sequencing. Clinical Cancer Research, 22, 259-267.
https://doi.org/10.1158/1078-0432.CCR-14-3212
[7]  Babina, I.S. and Turner, N.C. (2017) Advances and Chal-lenges in Targeting FGFR Signalling in Cancer. Nature Reviews Cancer, 17, 318-332.
https://doi.org/10.1038/nrc.2017.8
[8]  Weiss, J., Sos, M.L., Seidel, D., et al. (2010) Frequent and Focal FGFR1 Amplification Associates with Therapeutically Tractable FGFR1 Dependency in Squamous Cell Lung Cancer. Science Translational Medicine, 2, 62-93.
https://doi.org/10.1126/scitranslmed.3001451
[9]  Turner, N., Pearson, A., Sharpe, R., et al. (2010) FGFR1 Am-plification Drives Endocrine Therapy Resistance and Is a Therapeutic Target in Breast Cancer. Cancer Research, 70, 2085-2094.
https://doi.org/10.1158/0008-5472.CAN-09-3746
[10]  Fischbach, A., Rogler, A., Erber, R., et al. (2015) Fibro-blast Growth Factor Receptor (FGFR) Gene Amplifications Are Rare Events in Bladder Cancer. Histopathology, 66, 639-649.
https://doi.org/10.1111/his.12473
[11]  Hart, K.C., Robertson, S.C., Kanemitsu, M.Y., et al. (2000) Transformation and Stat Activation by Derivatives of FGFR1, FGFR3, and FGFR4. Oncogene, 19, 3309-3320.
https://doi.org/10.1038/sj.onc.1203650
[12]  Gallo, L.H., Nelson, K.N., Meyer, A.N., et al. (2015) Functions of Fi-broblast Growth Factor Receptors in Cancer Defined by Novel Translocations and Mutations. Cytokine & Growth Factor Reviews, 26, 425-449.
https://doi.org/10.1016/j.cytogfr.2015.03.003
[13]  Landberg, N., Dreimane, A., Rissler, M., et al. (2017) Primary Cells in BCR/FGFR1-Positive 8p11 Myeloproliferative Syndrome Are Sensitive to Dovitinib, Ponatinib, and Dasatinib. European Journal of Haematology, 99, 442-448.
https://doi.org/10.1111/ejh.12957
[14]  Andre, F. and Cortes, J. (2015) Rationale for Targeting Fibroblast Growth Factor Receptor Signaling in Breast Cancer. Breast Cancer Research and Treatment, 150, 1-8.
https://doi.org/10.1007/s10549-015-3301-y
[15]  Su, X., Zhan, P., Gavine, P.R., et al. (2014) FGFR2 Amplifica-tion Has Prognostic Significance in Gastric Cancer: Results from a Large International Multicentre Study. British Journal of Cancer, 110, 967-975.
https://doi.org/10.1038/bjc.2013.802
[16]  Dutt, A., Salvesen, H.B., Chent, T.H., et al. (2008) Drug-Sensitive FGFR2 Mutations in Endometrial Carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 105, 8713-8717.
https://doi.org/10.1073/pnas.0803379105
[17]  Akbay, E.A., Tchaicha, J.H., Altabef, A., et al. (2014) Kinase Do-main Activation of FGFR2 Yields High-Grade Lung Adenocarcinoma Sensitive to a Pan-FGFR Inhibitor in a Mouse Model of NSCLC. Cancer Research, 74, 4676-4684.
https://doi.org/10.1158/0008-5472.CAN-13-3218
[18]  Jung, E.J., Jung, E.J., Min, S.Y., et al. (2012) Fibroblast Growth Factor Receptor 2 Gene Amplification Status and Its Clinicopathologic Significance in Gastric Carcinoma. Hu-man Pathology, 43, 1559-1566.
https://doi.org/10.1016/j.humpath.2011.12.002
[19]  Baldia, P.H., Maurer, A., Heide, T., et al. (2016) Fibroblast Growth Factor Receptor (FGFR) Alterations in Squamous Differentiated Bladder Cancer: A Putative Therapeutic Target for a Small Subgroup. Oncotarget, 7, 1429-1439.
https://doi.org/10.18632/oncotarget.12198
[20]  Wu, Y.M., Su, F.Y., Kalyana-Sundaram, S., et al. (2013) Identifi-cation of Targetable FGFR Gene Fusions in Diverse Cancers. Cancer Discovery, 3, 636-647.
https://doi.org/10.1158/2159-8290.CD-13-0050
[21]  Veekony, H., Ylstra, B., Wilting, S.M., et al. (2007) DNA Copy Number Gains at Loci of Growth Factors and Their Receptors in Salivary Gland Adenoid Cystic Carcinoma. Clin-ical Cancer Research, 13, 3133-3139.
https://doi.org/10.1158/1078-0432.CCR-06-2555
[22]  Liu, X., Zhang, W., Geng, D., et al. (2014) Clinical Signifi-cance of Fibroblast Growth Factor Receptor-3 Mutations in Bladder Cancer: A Systematic Review and Meta-Analysis. Genetics and Molecular Research, 13, 1109-1120.
https://doi.org/10.4238/2014.February.20.12
[23]  Rosty, C., Aubriot, M.H., Cappellen, D., et al. (2005) Clinical and Biological Characteristics of Cervical Neoplasias with FGFR3 Mutation. Molecular Cancer, 4, 15.
https://doi.org/10.1186/1476-4598-4-15
[24]  Chesi, M., Nardini, E., Brents, L.A., et al. (1997) Frequent Translo-cation t(4;14)(p16.3;q32.3) in Multiple Myeloma Is Associated with Increased Expression and Activating Mutations of Fibroblast Growth Factor Receptor 3. Nature Genetics, 16, 260-264.
https://doi.org/10.1038/ng0797-260
[25]  Zhang, Y., Hiraishi, Y., Wang, H., et al. (2005) Constitutive Activating Mutation of the FGFR3b in Oral Squamous Cell Carcinomas. International Journal of Cancer, 117, 166-168.
https://doi.org/10.1002/ijc.21145
[26]  Seki, M., Nishimura, R., Yoshida, K., et al. (2015) Integrated Genetic and Epigenetic Analysis Defines Novel Molecular Subgroups in Rhabdomyosarcoma. Nature Communications, 6, Article No. 7557.
https://doi.org/10.1038/ncomms8557
[27]  Rizzo, A. and Brandi, G. (2021) Neoadjuvant Therapy for Cholangio-carcinoma: A Comprehensive Literature Review. Cancer Treatment and Research Communications, 27, 1003-1054.
https://doi.org/10.1016/j.ctarc.2021.100354
[28]  Razumilava, N. and Gores, G.J. (2013) Classification, Diagnosis, and Management of Cholangiocarcinoma. Clinical Gastroenterology and Hepatology, 11, 13-43.
https://doi.org/10.1016/j.cgh.2012.09.009
[29]  Wang, Y., Li, J., Xia, Y., et al. (2013) Prognostic Nomogram for Intrahepatic Cholangiocarcinoma after Partial Hepatectomy. Journal of Clinical Oncology, 31, 1188-1195.
https://doi.org/10.1200/JCO.2012.41.5984
[30]  Tariq, N.U., Mcnamara, M.G. and Valle, J.W. (2019) Biliary Tract Cancers: Current Knowledge, Clinical Candidates and Future Challenges. Cancer Management and Research, 11, 2623-2642.
https://doi.org/10.2147/CMAR.S157092
[31]  Subbiah, V., Lassen, U., Elez, E., et al. (2020) Dabraf-enib plus Trametinib in Patients with BRAF(V600E)-Mutated Biliary Tract Cancer (ROAR): A Phase 2, Open-Label, Single-Arm, Multicentre Basket Trial. The Lancet Oncology, 21, 1234-1243.
https://doi.org/10.1016/S1470-2045(20)30321-1
[32]  Smyth, E.C., Babina, I.S. and Turner, N.C. (2017) Gate-keeper Mutations and Intratumoral Heterogeneity in FGFR2- Translocated Cholangiocarcinoma. Cancer Discovery, 7, 248-249.
https://doi.org/10.1158/2159-8290.CD-17-0057
[33]  Rizzo, A., Ricci, A.D., Tober, N., et al. (2020) Second-Line Treatment in Advanced Biliary Tract Cancer: Today and Tomorrow. Anticancer Research, 40, 3013-3030.
https://doi.org/10.21873/anticanres.14282
[34]  Ueno, M., Ikeda, M., Sasaki, T., et al. (2020) Phase 2 Study of Lenvatinib Monotherapy as Second-Line Treatment in Unresectable Biliary Tract Cancer: Primary Analysis Results. BMC Cancer, 20, Article No. 1105.
https://doi.org/10.1186/s12885-020-07365-4
[35]  Plummer, R., Madi, A., Jeffels, M., et al. (2013) A Phase I Study of Pazopanib in Combination with Gemcitabine in Patients with Advanced Solid Tumors. Cancer Chemotherapy and Pharmacology, 71, 93-101.
https://doi.org/10.1007/s00280-012-1982-z
[36]  Shroff, R.T., Yarchoan, M., O’connor, A., et al. (2017) The Oral VEGF Receptor Tyrosine Kinase Inhibitor Pazopanib in Combination with the MEK Inhibitor Trametinib in Advanced Cholangiocarcinoma. British Journal of Cancer, 116, 1402-1407.
https://doi.org/10.1038/bjc.2017.119
[37]  Mahipal, A., Tella, S.H., Kommalapati, A., et al. (2020) Prevention and Treatment of FGFR Inhibitor-Associated Toxicities. Critical Reviews in Oncology/Hematology, 155, 1030-1091.
https://doi.org/10.1016/j.critrevonc.2020.103091
[38]  Cortellis. Clarivate Analytics Integrity. https://integrity.clarivate.com
[39]  Nogova, L., Sequist, L.V., Garcia, J.M.P., et al. (2017) Evaluation of BGJ398, a Fi-broblast Growth Factor Receptor 1-3 Kinase Inhibitor, in Patients with Advanced Solid Tumors Harboring Genetic Al-terations in Fibroblast Growth Factor Receptors: Results of a Global Phase I, Dose-Escalation and Dose-Expansion Study. Journal of Clinical Oncology, 35, 157-167.
https://doi.org/10.1200/JCO.2016.67.2048
[40]  Javle, M.M., Roychowdhury, S., Kelley, R.K., et al. (2021) Final Results from a Phase II Study of Infigratinib (BGJ398), an FGFR-Selective Tyrosine Kinase Inhibitor, in Patients with Previously Treated Advanced Cholangiocarcinoma Harboring an FGFR2 Gene Fusion or Rearrangement. Journal of Clinical Oncology, 39, 345-350.
https://doi.org/10.1200/JCO.2021.39.3_suppl.265
[41]  Javle, M., Lowery, M., Shroff, R.T., et al. (2018) Phase II Study of BGJ398 in Patients with FGFR-Altered Advanced Cholangiocarcinoma. Journal of Clinical Oncology, 36, 276-281.
https://doi.org/10.1200/JCO.2017.75.5009
[42]  Krook, M.A., Lenyo, A., Wilberding, M., et al. (2020) Efficacy of FGFR Inhibitors and Combination Therapies for Acquired Resistance in FGFR2-Fusion Cholangiocarcinoma. Molecular Cancer Therapeutics, 19, 847-857.
https://doi.org/10.1158/1535-7163.MCT-19-0631
[43]  Goyal, L., Shi, L., Liu, L.Y., et al. (2019) TAS-120 Over-comes Resistance to ATP-Competitive FGFR Inhibitors in Patients with FGFR2 Fusion-Positive Intrahepatic Cholangi-ocarcinoma. Cancer Discovery, 9, 1064-1079.
https://doi.org/10.1158/2159-8290.CD-19-0182
[44]  Rizzo, A. (2021) Novel Approaches for the Management of Biliary Tract Cancer: Today and Tomorrow. Expert Opinion on Investigational Drugs, 30, 295-297.
https://doi.org/10.1080/13543784.2021.1896247
[45]  Hall, T.G., Yu, Y., Eathiraj, S., et al. (2016) Preclinical Ac-tivity of ARQ 087, a Novel Inhibitor Targeting FGFR Dysregulation. PLoS ONE, 11, 1625-1694.
https://doi.org/10.1371/journal.pone.0162594
[46]  Mazzaferro, V., El-Rayes, B.F., Droz Dit Busset, M., et al. (2019) Derazantinib (ARQ 087) in Advanced or Inoperable FGFR2 Gene Fusion-Positive Intrahepatic Cholangiocarci-noma. British Journal of Cancer, 120, 165-171.
https://doi.org/10.1038/s41416-018-0334-0
[47]  Perera, T.P.S., Jovcheva, E., Mevellec, L., et al. (2017) Discovery and Pharmacological Characterization of JNJ-42756493 (Erdafitinib), a Functionally Selective Small-Molecule FGFR Family Inhibitor. Molecular Cancer Therapeutics, 16, 1010-1020.
https://doi.org/10.1158/1535-7163.MCT-16-0589
[48]  Hanna, K.S. (2019) Erdafitinib to Treat Urothelial Carcino-ma. Drugs Today (Barc), 55, 495-501.
https://doi.org/10.1358/dot.2019.55.8.3010573
[49]  Park, J.O., Feng, Y.H., Chen, Y.Y., et al. (2019) Updated Results of a Phase IIa Study to Evaluate the Clinical Efficacy and Safety of Erdafitinib in Asian Advanced Cholangiocar-cinoma (CCA) Patients with FGFR Alterations. Journal of Clinical Oncology, 37, 4117.
https://doi.org/10.1200/JCO.2019.37.15_suppl.4117
[50]  Rizzo, A. and Brandi, G. (2021) Novel Targeted Thera-pies for Advanced Cholangiocarcinoma. Medicina-Lithuania, 57, 212.
https://doi.org/10.3390/medicina57030212
[51]  Rizzo, A. and Brandi, G. (2021) A Foreword on Biliary Tract Cancers: Emerging Treatments, Drug Targets, and Fundamental Knowledge Gaps. Expert Opinion on Investigational Drugs, 30, 279-284.
https://doi.org/10.1080/13543784.2021.1901192
[52]  Abou-Alfa, G.K., Sahai, V., Hollebecque, A., et al. (2020) Pemigatinib for Previously Treated, Locally Advanced or Metastatic Cholangiocarcinoma: A Multicentre, Open-Label, Phase 2 Study. The Lancet Oncology, 21, 671-684.
https://doi.org/10.1016/S1470-2045(20)30109-1
[53]  Romero, D. (2020) Benefit from Pemigatinib in Cholangio-carcinoma. Nature Reviews Clinical Oncology, 17, 337-341.
https://doi.org/10.1038/s41571-020-0369-z
[54]  Sootome, H., Fujita, H., Ito, K., et al. (2020) Futibatinib Is a Nov-el Irreversible FGFR 1-4 Inhibitor That Shows Selective Antitumor Activity against FGFR-Deregulated Tumors. Cancer Research, 80, 4986-4997.
https://doi.org/10.1158/0008-5472.CAN-19-2568
[55]  Bahleda, R., Meric-Bernstam, F., Goyal, L., et al. (2020) Phase I, First-in-Human Study of Futibatinib, a Highly Selective, Irreversible FGFR1-4 Inhibitor in Patients with Ad-vanced Solid Tumors. Annals of Oncology, 31, 1405-1412.
https://doi.org/10.1016/j.annonc.2020.06.018
[56]  Meric-Bernstam, F., Arkenau, H., Tran, B., et al. (2018) Effica-cy of TAS-120, an Irreversible Fibroblast Growth Factor Receptor (FGFR) Inhibitor, in Cholangiocarcinoma Patients with FGFR Pathway Alterations Who Were Previously Treated with Chemotherapy and Other FGFR Inhibitors. Annals of Oncology, 29, 119-121.
https://doi.org/10.1093/annonc/mdy149
[57]  Voss, M.H., Hierro, C., Heist, R.S., et al. (2019) A Phase I, Open-Label, Multicenter, Dose-Escalation Study of the Oral Selective FGFR Inhibitor Debio 1347 in Patients with Ad-vanced Solid Tumors Harboring FGFR Gene Alterations. Clinical Cancer Research, 25, 2699-2707.
https://doi.org/10.1158/1078-0432.CCR-18-1959
[58]  Cleary, J.M., Iyer, G., Oh, D.Y., et al. (2020) Final Results from the Phase I Study Expansion Cohort of the Selective FGFR Inhibitor Debio 1,347 in Patients with Solid Tumors Harboring an FGFR Gene Fusion. Journal of Clinical Oncology, 38, 3603.
https://doi.org/10.1200/JCO.2020.38.15_suppl.3603
[59]  Hyman, D.M., Goyal, L., Grivas, P., et al. (2019) FUZE Clinical Trial: A Phase 2 Study of Debio 1347 in FGFR Fusion-Positive Advanced Solid Tumors Irrespectively of Tu-mor Histology. Journal of Clinical Oncology, 37, 3157.
https://doi.org/10.1200/JCO.2019.37.15_suppl.TPS3157
[60]  Balasubramanian, B., Myint, K.Z., Yacqub-Usman, K., et al. (2021) FGF Signalling as a Therapeutic Target in Cholangiocarcinoma. Cancer Science, 112, 419-425.
[61]  Noble, M.E.M., Endicott, J.A. and Johnson, L.N. (2004) Protein Kinase Inhibitors: Insights into Drug Design from Structure. Science, 303, 1800-1805.
https://doi.org/10.1126/science.1095920
[62]  Lamarca, A., Palm-er, D.H., Wasan, H.S., et al. (2019) ABC-06 Vertical Bar A Randomised Phase III, Multi-Centre, Open-Label Study of Active Symptom Control (ASC) Alone or ASC with Oxaliplatin/5-FU Chemotherapy (ASC plus mFOLFOX) for Pa-tients (pts) with Locally Advanced/Metastatic Biliary Tract Cancers (ABC) Previously-Treated with Cispla-tin/Gemcitabine (CisGem) Chemotherapy. Journal of Clinical Oncology, 37, 4003.
https://doi.org/10.1200/JCO.2019.37.15_suppl.4003
[63]  Loeuillard, E., Conboy, C.B., Gores, G.J., et al. (2019) Immunobiology of Cholangiocarcinoma. JHEP Reports, 1, 297-311.
https://doi.org/10.1016/j.jhepr.2019.06.003

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413